Answer:
2
Step-by-step explanation:
example A(2a,0),B(2b,0)
C(2b,2c),D(2a,2c)
mid point of AC=((2a+2b)/2,(0+2c)/2)=(a+b,c)
mid point of BD=((2b+2a)/2,(0+2c)/2)=(a+b,c)
∴midpoint of diagonals same or diagonals bisect each other.
2^2x=5^x−1
Take the log pf both sides:
ln(2^2x) = ln(5^x-1)
Expand the logs by pulling the exponents out:
2xln(2) = (x-1)ln(5)
Simpligy the right side:
2xln(2) = ln(5)x - ln(5)
Now solve for x:
Subtract ln(5)x from both sides:
2xln(2) - ln(5)x = -ln(5)
Factor x out of 2xln(2)-ln(5)x
x(2ln(2) - ln(5)) = -ln(5)
Divide both sides by (2ln(2) - ln(5))
X = - ln(5) / (2ln(2) - ln(5))