Answer:
V = 267.9 in^3
Step-by-step explanation:
V = 4/3 * (pi) * r^3
V = 4/3 * 3.14 * 4^3
V = 4/3 * 3.14 * 64
V = 256/3 * 3.14
V = 803.84/3
Answer:
[2(p + 1)]/q
Step-by-step explanation:
logx 2 = p
logx 7 = q
log7 4x² = log7 (2x)²
= (logx (2x)²)/(logx 7)
= (2 logx 2x)/(logx 7)
= (2 logx 2 + 2 logx x)/(logx 7)
= (2p + 2)/q
= [2(p + 1)]/q
- <u>A </u><u>triangle </u><u>with </u><u>sides </u><u>11m</u><u>, </u><u> </u><u>13m </u><u>and </u><u>18m</u>
- <u>We</u><u> </u><u>have </u><u>to </u><u>check </u><u>it </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not</u><u>? </u>
According to the Pythagoras theorem, The sum of the squares of perpendicular height and the square of the base of the triangle is equal to the square of hypotenuse that is sum of the squares of two small sides equal to the square of longest side of the triangle.
<u>We </u><u>imply</u><u> </u><u>it </u><u>in </u><u>the </u><u>given </u><u>triangle </u><u>,</u>
<u>From </u><u>Above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
The sum of the squares of two small sides that is perpendicular height and base is not equal to the square of longest side that is Hypotenuse
Solve x by simplifying both sides of the equation & then isolating the variable x=-4 & the negative comes in from the -12