Answer:
True.
Explanation:
Energy can be defined as the ability (capacity) to do work. The two (2) main types of energy are;
a. Gravitational potential energy (GPE): it is an energy possessed by an object or body due to its position above the earth.
b. Kinetic energy (KE): it is an energy possessed by an object or body due to its motion.
Furthermore, the mechanical energy of a physical object or body is the sum of the potential energy and kinetic energy possessed by the object or body.
Mathematically, it is given by the formula;
Mechanical energy = G.P.E + K.E
Mechanical energy that has been ‘lost' to friction isn't really lost. It just is no longer in its mechanical form. This is ultimately in accordance with the law of conservation of energy, which states that energy cannot be destroyed but can only be converted or transformed from one form to another.
Hence, Mechanical energy that has been ‘lost' to friction isn't really lost but converted into heat energy.
Explanation:
For this problem we have to take into account the expression
J = I/area = I/(π*r^(2))
By taking I we have
I = π*r^(2)*J
(a)
For Ja = J0r/R the current is not constant in the wire. Hence

and on the surface the current is

(b)
For Jb = J0(1 - r/R)

and on the surface

(c)
Ja maximizes the current density near the wire's surface
Additional point
The total current in the wire is obtained by integrating

and in a simmilar way for Jb
![I_{T}=\pi J_{0} \int\limits^R_0 {r^{2}(1-r/R)} \, dr = \pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2R}]=\pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2}]](https://tex.z-dn.net/?f=I_%7BT%7D%3D%5Cpi%20J_%7B0%7D%20%5Cint%5Climits%5ER_0%20%7Br%5E%7B2%7D%281-r%2FR%29%7D%20%5C%2C%20dr%20%3D%20%5Cpi%20%20%20J_%7B0%7D%5B%5Cfrac%7BR%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7BR%5E%7B2%7D%7D%7B2R%7D%5D%3D%5Cpi%20J_%7B0%7D%5B%5Cfrac%7BR%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7BR%5E%7B2%7D%7D%7B2%7D%5D)
And it is only necessary to replace J0 and R.
I hope this is useful for you
regards
I need help with my homework it’s due tomorrow and I feel like I failed can u help me bro