The mass of carbon dioxide that would be produced will be 22 kg
<h3>Combustion of carbon</h3>
The combustion of carbon in air can be represented by the equation:
C + O2 ---> CO2
The mole ratio of C to O2 to CO2 is 1:1:1.
Mole of 6kg of carbon = mass/molar mass
= 6000/12
= 500 moles
Equivalent mole of CO2 produced = 500 moles
Mass of 500 moles CO2 = mole x molar mass
= 500 x 44.01
= 22,005 g or 22 kg approximately
More on combustion reactions can be found here: brainly.com/question/13649083
<span>the electron configuration of the neutral Atom
1s2 2s1
should be your answer have a good day </span>
These energy exchange are not change in kinetic energy. They are changes is bonding energy between the molecules. If heat is coming into a substance during a phase change, then this energy is used to by break the bounds between the molecules of the substance. The example we will use here is ice melting into water.
<h3>Answer:</h3>
Rubidium (Rb)
<h3>Explanation:</h3>
Ionization Energy is defined as, "the minimum energy required to knock out or remove the valence electron from valence shell of an atom".
<h3>Trends in Periodic table:</h3>
Along Periods:
Ionization Energy increases from left to right along the periods because moving from left to right in the same period the number of protons (atomic number) increases but the number of shells remain constant hence, resulting in strong nuclear interactions and electrons are more attracted to nucleus hence, requires more energy to knock them out.
Along Groups:
Ionization energy decreases from top to bottom along the groups because the number of shells increases and the distance between nucleus and valence electrons also increases along with increase in shielding effect provided by core electrons. Therefore, the valence electrons experience less nuclear attraction and are easily removed.
<h3>Conclusion:</h3>
Given elements belong to same group hence, Rubidium present at the bottom of remaining elements will have least ionization energy due to facts explained in trends of groups above.