To solve using completing square method we proceed as follows:
x^2-10x+8=0
x^2-10x=-8
but
c=(b/2)^2
c=(10/2)^2=25
thus we can add this in our expression to get
x^2-10x+25=8+25
factorizing the LHS we get:
(x-5)(x-5)=33
(x-5)^2=33
getting the square roots of both sides we have:
x-5=+/-√33
x=5+/-√33
Answer: the answer is $456 and that is correct
Step-by-step explanation:
152×3= $456
Answer:
301.59
Step-by-step explanation:
your answer was almost right you just forgot to multiply by 9
1)
∠BAC = ∠NAC - ∠NAB = 144 - 68 = 76⁰
AB = 370 m
AC = 510 m
To find BC we can use cosine law.
a² = b² + c² -2bc*cos A
|BC|² = |AC|²+|AB|² - 2|AC|*|AB|*cos(∠BAC)
|BC|² = 510²+370² - 2*510*370*cos(∠76⁰) =
|BC| ≈ 553 m
2)
To find ∠ACB, we are going to use law of sine.
sin(∠BAC)/|BC| = sin(∠ACB)/|AB|
sin(76⁰)/553 m = sin(∠ACB)/370 m
sin(∠ACB)=(370*sin(76⁰))/553 =0.6492
∠ACB = 40.48⁰≈ 40⁰
3)
∠BAC = 76⁰
∠ACB = 40⁰
∠CBA = 180-(76+40) = 64⁰
Bearing C from B =360⁰- 64⁰-(180-68) = 184⁰
4)
Shortest distance from A to BC is height (h) from A to BC.
We know that area of the triangle
A= (1/2)|AB|*|AC|* sin(∠BAC) =(1/2)*370*510*sin(76⁰).
Also, area the same triangle
A= (1/2)|BC|*h = (1/2)*553*h.
So, we can write
(1/2)*370*510*sin(76⁰) =(1/2)*553*h
370*510*sin(76⁰) =553*h
h= 370*510*sin(76⁰) / 553= 331 m
h=331 m
Area = Length * Width
A = 1/2 * 3/4
A = 3/8
In short, Your Answer would be 3/8 Ft^2
Hope this helps!