I think it means which graph is the best at representing the data or data set.
For example if you were to graph the population of an animal you would use a line graph to represent the data
If you were determining how much percentage you would get a job you would use a pie graph. Etc
The statement that can be put in the blank to make the statement true would be 30 X 10^5 or you can also write this expression as 3.0x10^6.
Answer:

Step-by-step explanation:
we want to figure out the general term of the following recurrence relation

we are given a linear homogeneous recurrence relation which degree is 2. In order to find the general term ,we need to make it a characteristic equation i.e
the steps for solving a linear homogeneous recurrence relation are as follows:
- Create the characteristic equation by moving every term to the left-hand side, set equal to zero.
- Solve the polynomial by factoring or the quadratic formula.
- Determine the form for each solution: distinct roots, repeated roots, or complex roots.
- Use initial conditions to find coefficients using systems of equations or matrices.
Step-1:Create the characteristic equation

Step-2:Solve the polynomial by factoring
factor the quadratic:

solve for x:

Step-3:Determine the form for each solution
since we've two distinct roots,we'd utilize the following formula:

so substitute the roots we got:

Step-4:Use initial conditions to find coefficients using systems of equations
create the system of equation:

solve the system of equation which yields:

finally substitute:


and we're done!
Answer:
24000 pieces.
Step-by-step explanation:
Given:
Side lengths of cube = 
The part of the truck that is being filled is in the shape of a rectangular prism with dimensions of 8 ft x 6 1/4 ft x 7 1/2 ft.
Question asked:
What is the greatest number of packages that can fit in the truck?
Solution:
First of all we will find volume of cube, then volume of rectangular prism and then simply divide the volume of prism by volume of cube to find the greatest number of packages that can fit in the truck.


Length = 8 foot, Breadth =
, Height =


The greatest number of packages that can fit in the truck = Volume of prism divided by volume of cube
The greatest number of packages that can fit in the truck = 
Thus, the greatest number of packages that can fit in the truck is 24000 pieces.