How I’d do it:
5/6 three times makes 15/6. Made into a mixed fraction is 2 3/6, which in its simplest form is 2 1/2.
When converted to ounces, assuming that 6/6 is one complete ounce, then you get 2.5 ounces.
The total weight she picked up is 2.5 ounces.
Answer:
see the attachments for the two solutions
Step-by-step explanation:
When the given angle is opposite the shorter of the given sides, there will generally be two solutions. The exception is the case where the triangle is a right triangle (the ratio of the given sides is equal to the sine of the given angle). If the given angle is opposite the longer of the given sides, there is only one solution.
When a side and its opposite angle are given, as here, the law of sines can be used to solve the triangle(s). When the given angle is included between two given sides, the law of cosines can be used to solve the (one) triangle.
___
Here, the law of sines can be used to solve the triangle:
A = arcsin(a/c·sin(C)) = arcsin(25/24·sin(70°)) = 78.19° or 101.81°
B = 180° -70° -A = 31.81° or 8.19°
b = 24·sin(B)/sin(70°) = 13.46 or 3.64
I don't understand what you want solved for here...could you please tell me?
Answer:
0.0143
Step-by-step explanation:
In this question, we are asked to use the binomial distribution to calculate the probability that 10 or fewer passengers from a sample of MIT data project sample were on American airline flights.
We proceed as follows;
The probability that a passenger was an American flight is 15.5%= 15.55/100 = 0.155
Let’s call this probability p
The probability that he/she isn’t on the flight, let’s call this q
q =1 - p= 0.845
Sample size, n = 155
P(X < A) = P(Z < (A - mean)/standard deviation)
Mean = np
= 125 x 0.155
= 19.375
Standard deviation = √npq
= √ (125 x 0.155x 0.845)
= 4.0462
P(10 or fewer passengers were on American Airline flights) = P(X \leq 10)
= P(Z < (10.5 - 19.375)/4.0462)
= P(Z < -2.19)
= 0.0143