<span>C) Right
https://www.desmos.com/calculator/vf2qksnpwe
</span>right triangle
<span>Proof: You can apply the Pythagorean theorem.</span>
Answer: step-by-step
Step-by-step explanation:
answer: 10
to solve you have to follow PEMDAS
Answer:
-3p^3+7p^2-3
Step-by-step explanation:
i dont quite get the question but...
i guess this is how it is.
Take the mirror image of∆ABC Through the a line through the point y=3.
The new ∆ABC would have point C=(4,2)
B=(3,-6) A=(1,-3)
Now shifting the ∆ABC one unit (<em>i.e. 2 acc. to the graph as scale is 1 unit =2</em>) towards right ( or <em>adding 2 to the x coordinates of ∆ABC)</em>
We get the Coordinates of triangle ABC as A=(3,-3) B=(5,-6) C=(6,2).
This coordinate is the same coordinates of ∆A"B"C".
Hope it helps...
Regards;
Leukonov/Olegion.
<h3>
<u>Answer:</u></h3>
52.38 inch² & 261.90 inch²
<h3>
<u>Step-by-step explanation:</u></h3>
Here we need to find the area of the sector . So according to formula we know the area of sector as ,
Here we can see that the central angle subtended by the arc is 60° and the radius of the circle is 10 inches . So the required area would be ,
=> Area = ∅/ 360° × π r²
=> Area = 60°/360° × 22/7 × (10in.)²
=> Area = 1/6 * 22/7 * 100 in²
=> Area = 52 .380 in²
<h3>
<u>★</u><u> </u><u>Hence </u><u>the </u><u>area </u><u>o</u><u>f </u><u>the </u><u>red</u><u> </u><u>sector </u><u>is </u><u>5</u><u>2</u><u>.</u><u>3</u><u>8</u><u> </u><u>inch²</u><u>.</u></h3>
<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u>
Now let's find out the area of blue sector .The angle subtended by the arc will be (360-60)°=300° .
=> Area = 300/360 × 22/7 × 100 in²
=> Area = 261. 90 in²
<h3>
<u>★</u><u> </u><u>H</u><u>ence </u><u>the </u><u>area </u><u>of </u><u>blue </u><u>sector </u><u>is </u><u>2</u><u>6</u><u>1</u><u>.</u><u>9</u><u>0</u><u> </u><u>inch</u><u>²</u><u>.</u></h3>

