El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1
Answer:
The area of the sector is 
Step-by-step explanation:
we know that
The area of a complete circle (16π units^2) subtends a central angle of 2π radians
so
using proportion
Find out the area of a sector , if the central angle is equal to 8π/5 radians

Answer:
a) 240°
b) 30°
c) 225°
Step-by-step explanation:
To solve these equations you have to use the inverse of the given trigonometric functions. The inverse of <em>sin</em> is <em>arcsin</em>, and the inverse of <em>tan </em>is <em>arctan. </em>Instead of giving an angle, what is its sine?, the question is: given a sine, what is the angle?.
a)
sin(θ) = -√3/2
θ = arcsin(-√3/2)
θ = -60°
Given the periodicity of sine function, sin(-60°) is equivalent to sin(240°) (-60+180) and sin(300°) (-60+360).
b)
tan(θ) = 1/√3
θ = arctan(1/√3)
θ = 30°
c)
csc means cosecant, by definition:
csc(θ) = 1/sin(θ)
csc(θ) = -√2
1/sin(θ) = -√2
sin(θ) = -1/√2
θ = arcsin(-1/√2)
θ = -45° or 360-45 = 315° or 180+45 = 225°
Answer:
Table C
Step-by-step explanation:
Given
Table A to D
Required
Which shows a proportional relationship
To do this, we make use of:

Where k is the constant of proportionality.
In table (A)
x = 2, y = 4



x = 4, y = 9



Both values of k are different. Hence, no proportional relationship
In table (B)
x = 3, y = 4



x = 9, y = 16



Both values of k are different. Hence, no proportional relationship
In table (C):
x = 4, y = 12



x = 5, y = 15



x = 6, y = 18



This shows a proportional relationship because all values of k are the same for this table
I believe it’s false, sorry if I’m wrong