Answer:
1/32v²sin2θ
Step-by-step explanation:
Given the expression r(theta) = 1/16v²sinθcosθ
According to double angle of trigonometry identity;
Sin2θ = sin(θ+θ)
Sin2θ = sinθcosθ + cosθsinθ
Sin2θ = 2sinθcosθ
sinθcosθ = sin2θ/2 ... **
Substituting equation ** into the question
1/16v²sinθcosθ = 1/16v²(sin2θ/2)
1/16v²sinθcosθ = 1/2×1/16v²(sin2θ)
1/16v²sinθcosθ = 1/32v²sin2θ
Hence using the double angle identity, the equivalent expression is 1/32v²sin2θ
The value of (f-g)(144) is 0
Step-by-step explanation:
We are given:

We need to find value of (f-g)(144)
We will put x=144 for both f(x) and g(x)

So, the value of (f-g)(144) is 0
Keywords: Composite Functions
Learn more about Composite Functions at:
#learnwithBrainly
Faci 240+117=357,sper ca team ajutat multumestemi
If one number is 8/15, you take the difference which 7/15.

Explanation
![9-\sqrt[]{-64}](https://tex.z-dn.net/?f=9-%5Csqrt%5B%5D%7B-64%7D)
Step 1
Let's remember that
A complex number is an object of the form

where a and b are real numbers and
![\begin{gathered} i^2=-1 \\ i=\sqrt[]{-1} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20i%5E2%3D-1%20%5C%5C%20i%3D%5Csqrt%5B%5D%7B-1%7D%20%5Cend%7Bgathered%7D)
so
![\begin{gathered} 9-\sqrt[]{-64} \\ 9-\sqrt[]{-1\cdot64} \\ 9-\sqrt[]{-1}\sqrt[]{64} \\ 9-8\sqrt[]{-1} \\ 9-8i \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%209-%5Csqrt%5B%5D%7B-64%7D%20%5C%5C%209-%5Csqrt%5B%5D%7B-1%5Ccdot64%7D%20%5C%5C%209-%5Csqrt%5B%5D%7B-1%7D%5Csqrt%5B%5D%7B64%7D%20%5C%5C%209-8%5Csqrt%5B%5D%7B-1%7D%20%5C%5C%209-8i%20%5Cend%7Bgathered%7D)
therefore, the answer is

I hope this helps you