Combine numbers with the same variable so 10a + 7a = 17a and 3b + 6b = 9b. So the full answer is 17a + 9b.
If she can only work 15 hours a week and earns $7 per hour, just multiply 7 by 15 and you'll have your answer :)
Answer:
The maximum profit is when they make 10 units of A and 2 units of B.
Step-by-step explanation:
Let x is units of milk
Let y units of cacao
Given that :
The company's production plant has a total of 22 units of milk and 46 units of cacao available.
2x + y ≤ 22 (2 unit of milk for each of A and 1 for B; 22 units available)
4x + 3y ≤46 (4 unit of milk for each of A and 3 for B; 46 units available
Graph the constraint equations and find the point of intersection to determine the feasibility region.
The intersection point (algebraically, or from the graph) is (10, 2)
The objective function for the problem is the total profit, which is $6.2 per unit for A and $4.2 per unit for B: 6.2x + 4.2y.
Hence, we substitute (10, 2) into the above function:
6.2*10 + 4.2*2 = 70.4
The maximum profit is when they make 10 units of A and 2 units of B.