A vertical line that the graph of a function approaches but never intersects. The correct option is B.
<h3>When do we get vertical asymptote for a function?</h3>
Suppose that we have the function f(x) such that it is continuous for all input values < a or > a and have got the values of f(x) going to infinity or -ve infinity (from either side of x = a) as x goes near a, and is not defined at x = a, then at that point, there can be constructed a vertical line x = a and it will be called as vertical asymptote for f(x) at x = a
A vertical asymptote can be described as a vertical line that the graph of a function approaches but never intersects.
Hence, the correct option is B.
Learn more about Vertical Asymptotes:
brainly.com/question/2513623
#SPJ1
Answer:
y = 2(x + 3)² - 4
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Using the method of completing the square
y = 2x² + 12x + 14 ← factor out 2 from the first 2 terms
= 2(x² + 6x) + 14
To complete the square
add/subtract ( half the coefficient of the x- term)² to x² + 6x
y = 2(x² + 2(3)x + 9 - 9 ) + 14
= 2(x + 3)² - 18 + 14
= 2(x + 3)² - 4 ← in vertex form
Answer:
8.49
Step-by-step explanation:
there is a little formula related to the famous formula of Pythagoras.
it says that the height of a triangle is the square root of the product of both segments of the baseline (the segments the height splits the baseline into).
so, x is actuality the height of the triangle.
x = sqrt(3×24) = sqrt(72) = 8.49
Answer:
12p x (15 x 25) I might not be correct :')
The correlation coefficient is a number that indicates the direction
and closeness of points of a line of best of fit.
So it tells us two things.
It tells us the direction of the line of best fit
and it tells us the closeness of the points.
Usually, anything between -0.9 and -0.6 has a moderate negative correlation. If you look at this on a graph, you will notice that the points definitely resemble a line so we say it's moderate.
It will be a negative correlation because the slope is negative.