<h2>
Hello!</h2>
The answers are:
The possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
<h2>
Why?</h2>
To solve the problem, we need to remember the following properties of the exponents and roots:
![a\sqrt[n]{b}=\sqrt[n]{a^{n}*b} \\\\\sqrt[n]{a^{m} }=a^{\frac{m}{n}}\\\\(a^{b})^{c}=a^{b*c}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bb%7D%3D%5Csqrt%5Bn%5D%7Ba%5E%7Bn%7D%2Ab%7D%20%5C%5C%5C%5C%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%20%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%5C%5C%5C%5C%28a%5E%7Bb%7D%29%5E%7Bc%7D%3Da%5E%7Bb%2Ac%7D)
Then, we are given the expression:

So, finding "x", we have:
![x^{3}=375\\\\(x^{3})^{\frac{1}{3} } =(375)^{\frac{1}{3}}\\\\x=\sqrt[3]{375}=\sqrt[3]{125*3}=\sqrt[3]{125}*\sqrt[3]{3}=5\sqrt[3]{3}](https://tex.z-dn.net/?f=x%5E%7B3%7D%3D375%5C%5C%5C%5C%28x%5E%7B3%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%28375%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%5C%5C%5Cx%3D%5Csqrt%5B3%5D%7B375%7D%3D%5Csqrt%5B3%5D%7B125%2A3%7D%3D%5Csqrt%5B3%5D%7B125%7D%2A%5Csqrt%5B3%5D%7B3%7D%3D5%5Csqrt%5B3%5D%7B3%7D)
Hence, the possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
Have a nice day!
<h3>
Answer: 7</h3>
The list of single digit primes is {2,3,5,7}. The largest prime is 7, so B = 7 is the largest possible value.
Also note how 707,747 rounds to 708,000 when rounding to 3 significant figures.
Answer:
which agrees with option"B" of the possible answers listed
Step-by-step explanation:
Notice that in order to solve this problem (find angle JLF) , we need to find the value of the angle defined by JLG and subtract it from
, since they are supplementary angles. So we focus on such, and start by drawing the radii that connects the center of the circle (point "O") to points G and H, in order to observe the central angles that are given to us as
and
. (see attached image)
We put our efforts into solving the right angle triangle denoted with green borders.
Notice as well, that the triangle JOH that is formed with the two radii and the segment that joins point J to point G, is an isosceles triangle, and therefore the two angles opposite to these equal radius sides, must be equal. We see that angle JOH can be calculated by : 
Therefore, the two equal acute angles in the triangle JOH should add to:
resulting then in each small acute angle of measure
.
Now referring to the green sided right angle triangle we can find find angle JLG, using: 
Finally, the requested measure of angle JLF is obtained via: 
Answer: H
Step-by-step explanation:
Supplementary angles just mean they add up to 180 degrees. 180 degrees means that when the two angles are put together one of each of their sides will form a straight line.
Answer:
5200 deer/year
Step-by-step explanation:
- we will call the rate of change, the slope of the function
