Q = recessive allele frequency = 0.3, and thus in H-W equilibrium there are ONLY two alleles, q (recessive) and
p (dominant). Therefore all of the p and q present for this gene in a population must account for 100% of this gene's alleles. And 100% = 1.00.
So p, the dominant allele frequency, must be equal to 1 - q --> p = 1 - q
p = 1 - 0.3 = 0.7.
Since heterozygotes are a combination of the p and q, we must again look at the frequencies of each genotype: p + q = 1, then (p+q)^2 = 1^2
So multiplying out (p+q)(p+q) = 1, we get: p^2+2pq+q^2 = 1 (all genotypes), where p^2 = frequency of homozygous dominant individuals, 2pq = frequency of heterozygous individuals, and q^2 = frequency of homozygous recessive individuals.
Therefore if the population is in H-W equilibrium, then the expected frequency of heterozygous individuals = 2pq = 2(0.7)(0.3)
2pq = 2(0.21) = 0.42, or 42% of the population.
Hope that helps you to understand how to solve population genetics problems!
Molecular homology, because it compares dna
Answer:
malleability
Explanation:
the last two are relating to elelectricity and luster isnt something that can be hammered
Answer:
Invertebrates can have bilateral or radial symmetry, or they can be asymmetrical. Bilateral symmetry means that the animal is arranged in the same way on both sides. Radial symmetry means the body parts are arranged in a circle around a central point.