Answer:
To get an expression relating to x you need to have x alone on one side of your equation. ie x =
Try this:
rx - st = r
remove st from the rx side
rx = r + st
now divide by r
x = (r + st)/r
You now have your expression relating to x
Answer:
a) ![P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7Bx%7D%7D%7B%28x%29%21%7D)
b) f(2) = 0.04462
c) f(1) = 0.01487
d) ![P(X \geq 2) = 0.93803](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%200.93803)
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
![P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-%5Cmu%7D%2A%5Cmu%5E%7Bx%7D%7D%7B%28x%29%21%7D)
In which
x is the number of successes
e = 2.71828 is the Euler number
is the mean in the given interval.
In this question:
![\mu = 6](https://tex.z-dn.net/?f=%5Cmu%20%3D%206)
a. Write the appropriate Poisson probability function.
Considering ![\mu = 6](https://tex.z-dn.net/?f=%5Cmu%20%3D%206)
![P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7Bx%7D%7D%7B%28x%29%21%7D)
b. Compute f (2).
This is P(X = 2). So
![P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7Bx%7D%7D%7B%28x%29%21%7D)
![P(X = 2) = \frac{e^{-6}*6^{2}}{(2)!} = 0.04462](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7B2%7D%7D%7B%282%29%21%7D%20%3D%200.04462)
So f(2) = 0.04462
c. Compute f (1).
This is P(X = 1). So
![P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7Bx%7D%7D%7B%28x%29%21%7D)
![P(X = 1) = \frac{e^{-6}*6^{1}}{(1)!} = 0.01487](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7B1%7D%7D%7B%281%29%21%7D%20%3D%200.01487)
So f(1) = 0.01487.
d. Compute P(x≥2)
This is:
![P(X \geq 2) = 1 - P(X < 2)](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%201%20-%20P%28X%20%3C%202%29)
In which:
![P(X < 2) = P(X = 0) + P(X = 1) + P(X = 2)](https://tex.z-dn.net/?f=P%28X%20%3C%202%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29)
![P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7Bx%7D%7D%7B%28x%29%21%7D)
![P(X = 0) = \frac{e^{-6}*6^{0}}{(0)!} = 0.00248](https://tex.z-dn.net/?f=P%28X%20%3D%200%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7B0%7D%7D%7B%280%29%21%7D%20%3D%200.00248)
![P(X = 1) = \frac{e^{-6}*6^{1}}{(1)!} = 0.01487](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7B1%7D%7D%7B%281%29%21%7D%20%3D%200.01487)
![P(X = 2) = \frac{e^{-6}*6^{2}}{(2)!} = 0.04462](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%20%5Cfrac%7Be%5E%7B-6%7D%2A6%5E%7B2%7D%7D%7B%282%29%21%7D%20%3D%200.04462)
Then
![P(X < 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00248 + 0.01487 + 0.04462 = 0.06197](https://tex.z-dn.net/?f=P%28X%20%3C%202%29%20%3D%20P%28X%20%3D%200%29%20%2B%20P%28X%20%3D%201%29%20%2B%20P%28X%20%3D%202%29%20%3D%200.00248%20%2B%200.01487%20%2B%200.04462%20%3D%200.06197)
![P(X \geq 2) = 1 - P(X < 2) = 1 - 0.06197 = 0.93803](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%201%20-%20P%28X%20%3C%202%29%20%3D%201%20-%200.06197%20%3D%200.93803)
So
![P(X \geq 2) = 0.93803](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%200.93803)
Answer:
3 days: 8 heads.
10 days: 1024 heads.
Step-by-step explanation:
If each time the hero cuts off all the heads, then the amount doubles each time. This can also be represented using powers of 2, with 2^n, where n is the number of days.
2^1 = 2, so two heads the first time he cuts it.
2^2 = 4, so four heads the second time he cuts it.
With three, 2^3 is 8 so there are 8 heads.
With ten, 2^10 is 1024 so there are 1024 heads.
Answer:
V =84.78 inches ^2
Step-by-step explanation:
The volume of a cylinder is given by
V= pi *r^2 h
We know h= 12 inches
and r = 1.5 inches
V = pi * (1.5)^2 * 12
V = pi * 2.25*12
V = 27 pi
If we approximate by 3.14
V = 3.14 (27)
V =84.78 inches ^2
80,81,82,83 are consecutive numbers that add up to 326.