The completely factored form of f(x) = 6x³ - 13x² - 4x + 15 is f(x) = (x + 1)(2x - 3)(3x - 5)
<h3>How to factor the expression?</h3>
The expression is given as:
f(x) = 6x³ - 13x² - 4x + 15
Expand the expression
f(x) = 6x³ - 19x² + 6x² + 15x - 19x + 15
Rewrite as:
f(x) = 6x³ + 6x² + 15x- 19x² - 19x + 15
Factorize the equation
f(x) = (x + 1)(6x²- 19x + 15)
Expand (6x² - 19x + 15)
f(x) = (x + 1)(6x² - 10x - 9x + 15)
Factorize the expression
f(x) = (x + 1)(2x - 3)(3x - 5)
Hence, the completely factored form of f(x) = 6x³ - 13x² - 4x + 15 is f(x) = (x + 1)(2x - 3)(3x - 5)
Read more about factorized expression at:
brainly.com/question/7438300
Answer:
the answer is D.
Step-by-step explanation:
Answer:
4.) y= 3x-2 6) y= 4
Step-by-step explanation:
4.
m= 3 , (-2,-8)
y-(-8) = 3(x-(-2))
y+8= 3x+6
y= 3x-2
6.
m= 0 , (5,4)
y- 4= 0(x-5)
y= 4
y= 4