I believe your answer would be "Cell division"
DNA replication occurs just before the process of cell division which is also known as mitosis.
Mitosis is when the cell is being divided into two and this is when DNA starts to replicate and it produces more cells and the process goes on and on and no.
Hope this helps. c:
Answer:
- Calcium binds to troponin C
- Troponin T moves tropomyosin and unblocks the binding sites
- Myosin heads join to the actin forming cross-bridges
- ATP turns into ADP and inorganic phosphate and releases energy
- The energy is used to impulse myofilaments slide producing a power stroke
- ADP is released and a new ATP joins the myosin heads and breaks the bindings to the actin filament
- ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, starting a new cycle
- Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.
Explanation:
In rest, the tropomyosin inhibits the attraction strengths between myosin and actin filaments. Contraction initiates when an action potential depolarizes the inner portion of the muscle fiber. Calcium channels activate in the T tubules membrane, releasing <u>calcium into the sarcolemma.</u> At this point, tropomyosin is obstructing binding sites for myosin on the thin filament. When calcium binds to troponin C, troponin T alters the tropomyosin position by moving it and unblocking the binding sites. Myosin heads join to the uncovered actin-binding points forming cross-bridges, and while doing so, ATP turns into ADP and inorganic phosphate, which is released. Myofilaments slide impulsed by chemical energy collected in myosin heads, producing a power stroke. The power stroke initiates when the myosin cross-bridge binds to actin. As they slide, ADP molecules are released. A new ATP links to myosin heads and breaks the bindings to the actin filament. Then ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, which starts a new binding cycle to actin. Finally, Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.
Answer and Explanation:
<u>Cross:</u> aa Bb dd Ee x AA bb Dd Ee
We can calculate the probability of getting heterozygous individuals in the progeny by using the <u>product rule</u>. Assuming that these four genes <u>assort independently</u> (<em>events that occur independently from each other</em>), we can infer that the F1 will have the next genotypic proportions for each gene:
1) aa x AA
F1) 4/4=1 Aa
2) Bb x bb
F1) ½ bb
½ Bb
3) dd x Dd
F1) ½ dd
½ Dd
4) Ee x Ee
F1) ¼ EE
2/4 = ½ Ee
¼ ee
So, to know what the probability is that the F1 of being heterozygous for all loci, we must multiply the respective individual probabilities of getting a heterozygous genotype, like this:
1 Aa x ½ Bb x ½ Dd x ½ Ee = 1/8 AaBbDdEe
<span>Surface currents are generated largely by wind. Their patterns are determined by wind direction, Coriolis forces from the Earth’s rotation, and the position of landforms that interact with the currents. Surface wind-driven currents generate upwelling currents in conjunction with landforms, creating deepwater currents. </span>
its bumped because it stores water for the camel