Answer:
5/2=2.5, while 1/3= aprox 0.333, therefore 5/2 is not equal to 1/3.
Step-by-step explanation:
Here is the long division table for 5/2
2. 5 0 0
2 5. 0 0 0
− 4
1 0
− 1 0
0 0
− 0
0 0
− 0
0
Here is the long division table 1/3 ( to three decimal places)
0. 3 3 3
3 1. 0 0 0
− 0
1 0
− 9
1 0
− 9
1 0
− 9
1
An easier way to do 5/2 is to think of 50/2, which is 25, and then add a decimal point, making it 2.5.
An easier way to do 1/3 is to think of it as one third (of one), or 0.333 repeating.
542 that is the correct answer please rate and like me
17 would be the answer, you divide 30 by 1.75 and you get 17.14 but you can’t buy .14th of a book so you’re left with 17
Ok, so rembmer some basica exponential rules and some fraction rules
(ab)/(cd)=(a/c)(b/d)
and

so
Answer:
The area of the square adjacent to the third side of the triangle is 11 units²
Step-by-step explanation:
We are given the area of two squares, one being 33 units² the other 44 units². A square is present with all sides being equal, and hence the length of the square present with an area of 33 units² say, should be x² = 33 - if x = the length of one side. Let's make it so that this side belongs to the side of the triangle, to our convenience,
x² = 33,
x =
.... this is the length of the square, but also a leg of the triangle. Let's calculate the length of the square present with an area of 44 units². This would also be the hypotenuse of the triangle.
x² = 44,
x =
.... applying pythagorean theorem we should receive the length of a side of the unknown square area. By taking this length to the power of two, we can calculate the square's area, and hence get our solution.
Let x = the length of the side of the unknown square's area -
=
+
,
x =
... And
squared is 11, making the area of this square 11 units².