1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vaieri [72.5K]
3 years ago
14

Given the recursive formula shown, what are the first 4 terms of the sequence?

Mathematics
1 answer:
Lorico [155]3 years ago
3 0

Answer:

5,20,80,320

Step-by-step explanation:

a1 = 5

an = 4 an-1

Let n = 2

a2 = 4 * a1 = 4*5 = 20

Let n = 3

a3 = 4 * a2 = 4*20 = 80

Let n = 4

a4 = 4 * a3 = 4*80 = 320

You might be interested in
Need help to do this step by step please <br> 3x2 - 2x=-1
sdas [7]

Answer:

Solving the expression 3x^2-2x=-1 we get: \mathbf{x=\frac{1+\sqrt{2}i }{3}\:or\:x=\frac{1-\sqrt{2}i }{3}}

Step-by-step explanation:

We need to solve the expression: 3x^2-2x=-1

This is a quadratic expression and it can be solved using quadratic formula

Solving:

3x^2-2x=-1\\

we can write it as:

3x^2-2x+1=0

The quadratic formula is: x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

where a = 3, b = -2 and c= 1

Putting values and solving:

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\x=\frac{-(-2)\pm\sqrt{(-2)^2-4(3)(1)}}{2(3)}\\x=\frac{2\pm\sqrt{4-12}}{2(3)}\\x=\frac{2\pm\sqrt{-8}}{6}\\We\:know\:that\:\sqrt{-1}=i\\x=\frac{2\pm\sqrt{8}\sqrt{-1} }{6} \\We\:know\:\sqrt{8}=\sqrt{2\times 2 \times 2}=\sqrt{2^2 \times 2}=2\sqrt{2}   \\x=\frac{2\pm2\sqrt{2}i }{6}\\Now,\\x=\frac{2+2\sqrt{2}i }{6}\:or\:x=\frac{2-2\sqrt{2}i }{6}\\x=\frac{2(1+\sqrt{2}i) }{6}\:or\:x=\frac{2(1-\sqrt{2}i) }{6}\\x=\frac{1+\sqrt{2}i }{3}\:or\:x=\frac{1-\sqrt{2}i }{3}

So, solving the expression 3x^2-2x=-1 we get: \mathbf{x=\frac{1+\sqrt{2}i }{3}\:or\:x=\frac{1-\sqrt{2}i }{3}}

8 0
3 years ago
If the gradient of the tangent to
Marizza181 [45]

Answer:

Point A(9, 3)

General Formulas and Concepts:

<u>Pre-Algebra</u>  

Order of Operations: BPEMDAS  

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties  

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>  

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}  

<u>Calculus</u>  

Derivatives  

Derivative Notation  

Derivative of a constant is 0  

Basic Power Rule:  

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = \sqrt{x}<em />

<em />\displaystyle y' = \frac{1}{6}<em />

<em />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = x^{\frac{1}{2}}
  2. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}x^{\frac{1}{2} - 1}
  3. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}x^{-\frac{1}{2}}
  4. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2x^{\frac{1}{2}}}
  5. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x}}

<u>Step 3: Solve</u>

<em>Find coordinates of A.</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{6} = \frac{1}{2\sqrt{x}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle \frac{1}{3} = \frac{1}{\sqrt{x}}
  3. [Multiplication Property of Equality] Cross-multiply:                                      \displaystyle \sqrt{x} = 3
  4. [Equality Property] Square both sides:                                                           \displaystyle x = 9

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{9}
  2. [√Radical] Evaluate:                                                                                         \displaystyle y = 3

∴ Coordinates of A is (9, 3).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

7 0
3 years ago
Use the distributive property to write an expression equivalent to 5×(3+4)​
Lubov Fominskaja [6]
The answer is 5x times 7
8 0
3 years ago
The number of potholes in any given 1-mile stretch of freeway pavement in Pennsylvania has a Normal distribution. This distribut
Iteru [2.4K]

Answer:

83.85% of 1-mile long roadways with potholes numbering between 22 and 58

Step-by-step explanation:

The Empirical Rule states that, for a normally distributed random variable:

68% of the measures are within 1 standard deviation of the mean.

95% of the measures are within 2 standard deviation of the mean.

99.7% of the measures are within 3 standard deviations of the mean.

In this problem, we have that:

Mean = 49

Standard deviation = 9

Using the Empirical Rule, what is the approximate percentage of 1-mile long roadways with potholes numbering between 22 and 58?

22 = 49 - 3*9

So 22 is three standard deviations below the mean.

Since the normal distribution is symmetric, 50% of the measures are below the mean and 50% are above the mean.

Of those 50% which are below the mean, 99.7% of those are within 3 standard deviations of the mean, that is, greater than 22.

58 = 49 + 9

So 58 is one standard deviation of the mean.

Of those which are above the mean, 68% are within 1 standard deviation of the mean, that is, lesser than 58.

Then

0.997*0.5 + 0.68*0.5 = 0.8385 = 83.85%

83.85% of 1-mile long roadways with potholes numbering between 22 and 58

5 0
3 years ago
What percent of 45 is 18
alexira [117]
4% of 45 equals 18.
3 0
4 years ago
Read 2 more answers
Other questions:
  • Please find a and b help asap:)
    10·1 answer
  • Evaluate <br> (86)(8-3)(4-2)<br> 2<br> .<br><br> A) 8 <br> B) 16 <br> C) 32 <br> D) 64
    13·1 answer
  • Randy spins a spinner with sections labeled A, B, C, D, E, F, G, and H.
    12·1 answer
  • Prove the identity <br> I NEED TO KNOW FAST AS POSSIBLE
    6·1 answer
  • Help .................................................
    7·2 answers
  • Sally will earn $30 for every 5 hours that she babysits. Which of the following equations can be used to represent the proportio
    6·1 answer
  • Plz help I have a time test
    7·1 answer
  • Pls help Which of the following exponential equations is equivalent to the logarithmic equation below ? In x = 7
    13·1 answer
  • Please help asap! <br> Which graph represents the function?
    11·1 answer
  • Find the solution of y=x+3 and y=2x+6
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!