Answer:
Option b oxaloacetate is the right one.
Explanation:
There are major eight steps in TCA cycle. Oxaloacetate plays a pivotal role in <u>first and eight step</u>s of cycle.
Step 1. In the first step of the citric acid cycle, acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon molecule called citrate.
Step 8. In the last step of the citric acid cycle, oxaloacetate—the starting four-carbon compound-is regenerated by oxidation of malate. Another molecule of NAD+ is reduced to NADH in the process.
Answer:
Because stains are made of different types of molecules, a range of enzymes are needed to break them down. Proteases break down proteins, so are good for blood, egg, gravy, and other protein stains. Amylases break down starches, and lipases break down fats and grease. Washing powders usually only contain one type of enzyme, though some have two or all three.
Explanation:
Muscle tissue is responsible for both voluntary and involuntary movements.
Mitosis
Involves one cell division?
Results in two daughter cells
Results in diploid? daughter cells? (chromosome? number remains the same as parent cell)
Daughter cells are genetically identical
Occurs in all organisms except viruses
Creates all body cells (somatic?) apart from the germ cells? (eggs and sperm)
Prophase is much shorter
No recombination/crossing over occurs in prophase.
In metaphase individual chromosomes (pairs of chromatids) line up along the equator.
During anaphase the sister chromatids are separated to opposite poles.
Meiosis
Involves two successive cell divisions
Results in four daughter cells
Results in haploid? daughter cells (chromosome number is halved from the parent cell)
Daughter cells are genetically different
Occurs only in animals, plants and fungi
Creates germ cells (eggs and sperm) only
Prophase I takes much longer
Involves recombination/crossing over of chromosomes in prophase I
In metaphase I pairs of chromosomes line up along the equator.
During anaphase I the sister chromatids move together to the same pole.
During anaphase II the sister chromatids are separated to opposite poles.
Similarities
Mitosis
Diploid parent cell
Consists of interphase, prophase, metaphase, anaphase and telophase
In metaphase individual chromosomes (pairs of chromatids) line up along the equator.
During anaphase the sister chromatids are separated to opposite poles.
Ends with cytokinesis.
Meiosis
Diploid parent cell
Consists of interphase, prophase, metaphase, anaphase and telophase (but twice!)
In metaphase II individual chromosomes (pairs of chromatids) line up along the equator.
During anaphase II the sister chromatids are separated to opposite poles.
Ends with cytokinesis.