O.7 kilometers is equivilent to 7 hectometers :)
Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm
Hemoglobin has a much greater affinity for carbon monoxide than oxygen. In a hyperbaric chamber (containing high levels of oxygen) can treat carbon monoxide poisoning, by displacing carbon monoxide from Hemoglobin competitively.
Hemoglobin has a much greater affinity for carbon monoxide than oxygen. This is because, a coordinate bond is formed with Carbon monoxide and Haem structure of the hemoglobin.
Carbon monoxide with Hemoglobin is called as Carboxy haemoglobin.
Presence of oxygen displaces the Carbon monoxide with Hemoglobin that is formed due to poisoning.
Hyperbaric chamber is a chamber which contains pure oxygen in a chamber. The atmospheric pressure is kept about three to four times than the normal, such that the replacement of Carbon monoxide from Haem can occur as fast as possible since this reduces the half life of the Carboxy haemoglobin.
It is advisable not to treat Carbon monoxide poisoning yourself.
Hyperbaric oxygen is used to treat the following conditions as well:
- Infections
- Wounds
- Air bubble is blood
Learn more about Carbon Monoxide here, brainly.com/question/11313918
#SPJ4
Answer:
2.81 × 10⁶ mm³
2.81 × 10⁻³ m³
Explanation:
Step 1: Given data
Length (l): 250 mm
Width (w): 225 mm
Thickness (t): 50 mm
Step 2: Calculate the volume of the textbook
The book is a cuboid so we can find its volume (V) using the following expression.
V = l × w × t = 250 mm × 225 mm × 50 mm = 2.81 × 10⁶ mm³
Step 3: Convert the volume to cubic meters
We will use the relationship 1 m³ = 10⁹ mm³.
2.81 × 10⁶ mm³ × 1 m³ / 10⁹ mm³ = 2.81 × 10⁻³ m³
Cause <span>Pure silica </span>can<span> produce an excellent </span>glass<span>, but it is </span>very high<span>-melting (1,723 </span>o<span> C, ... and ability to transmit ultraviolet light (an ability that ordinary </span>glass does<span> not </span>have<span>). ... of its </span>extremely high melting point<span> (1,723 </span>o<span> C, or 3,133 </span>o<span> F), but fluxes </span>can<span> be</span>