<u>Answer:</u> The activation energy of the reverse reaction is 47 kJ/mol
<u>Explanation:</u>
The chemical equation for the decomposition of dinitrogen pentaoxide follows:

We are given:
Activation energy of the above reaction (forward reaction) = 102 kJ/mol
Enthalpy of the reaction = +55 kJ/mol
As, the enthalpy of the reaction is positive, the reaction is said to be endothermic in nature.
To calculate the activation energy for the reverse reaction, we use the equation:

where,
= Activation energy of the forward reaction = 102 kJ/mol
= Activation energy of the backward reaction = ?
= Enthalpy of the reaction = +55 kJ/mol
Putting values in above equation, we get:

Hence, the activation energy of the reverse reaction is 47 kJ/mol
The low temperature outside lowers the volume of the gas according to Charles' law because this law describes how a gas will behave at constant pressure. It shows that the volume of a given mass of a gas is directly proportional to the absolute temperature provided the pressure remains constant. An increase in temperature leads to an increase in volume while a decrease reduces the volume. This is due to the reduction in the distances traveled by the vibrating particles of the gas because of the lost kinetic energy.
Answer:
True
Explanation:
If you look closley at the nucleus, you don't count the neutrons just the prtons which then effect the electrons.
Good luck :)
Answer:
Answer:
a plant cell
Explanation:
because the chrolopast is green
Explanation:
Answer: 1.14
Explanation:

To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

To calculate pH of gastric juice:
molarity of
= 0.072
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)

Thus the pH of the gastric juice is 1.14