1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
3 years ago
15

A tree in Chau's backyard has been growing for 2.4 years. The tree is .25 meters tall.

Mathematics
1 answer:
nevsk [136]3 years ago
5 0

Answer:

0.1042 meters per year

Step-by-step explanation:

Find the unit rate by dividing 0.25 by 2.4

0.25/2.4

= 0.1042

So, the unit rate is approximately 0.1042 meters per year

You might be interested in
A pattern follows the rule "Starting with two, every consecutive line has a number one more than the previous line."
mars1129 [50]
There will be eight marbles on the 9th line
3 0
3 years ago
Reason Abstractly Find two integers whose sum is -7 and whose
Travka [436]

Step-by-step explanation:

Let's represent the two integers with the variables x and y.

From the problem statement, we can create the following two equations:

x + y = -7

xy = 12

With the first equation, we can subtract y from both sides to isolate the x variable to the left-hand side:

x = -7 - y

Now that we have a value for x, we can plug it into the second equation and solve for y:

(-7 - y)y = 12

-7y - y^{2} = 12

Now, let's move everything to one side of the equation:

y^{2} + 7y + 12 = 0

Factoring this quadratic will give us two values for y:

(y + 4)(y + 3) = 0

y = -3, -4

Since we now know y = -3, -4, we can plug this back into either of the original equations to get a value for x, which will be x = -4, -3.

So the two numbers that sum to -7 and have a product of 12 are -3, -4.

7 0
3 years ago
Read 2 more answers
Can anyone help me integrate :
worty [1.4K]
Rewrite the second factor in the numerator as

2x^2+6x+1=2(x+2)^2-2(x+2)-3

Then in the entire integrand, set x+2=\sqrt3\sec t, so that \mathrm dx=\sqrt3\sec t\tan t\,\mathrm dt. The integral is then equivalent to

\displaystyle\int\frac{(\sqrt3\sec t-2)(6\sec^2t-2\sqrt3\sec t-3)}{\sqrt{(\sqrt3\sec t)^2-3}}(\sqrt3\sec t)\,\mathrm dt
=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{\sqrt{\sec^2t-1}}\,\mathrm dt
=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{\sqrt{\tan^2t}}\,\mathrm dt
=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{|\tan t|}\,\mathrm dt

Note that by letting x+2=\sqrt3\sec t, we are enforcing an invertible substitution which would make it so that t=\mathrm{arcsec}\dfrac{x+2}{\sqrt3} requires 0\le t or \dfrac\pi2. However, \tan t is positive over this first interval and negative over the second, so we can't ignore the absolute value.

So let's just assume the integral is being taken over a domain on which \tan t>0 so that |\tan t|=\tan t. This allows us to write

=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{\tan t}\,\mathrm dt
=\displaystyle\int(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\csc t\,\mathrm dt

We can show pretty easily that

\displaystyle\int\csc t\,\mathrm dt=-\ln|\csc t+\cot t|+C
\displaystyle\int\sec t\csc t\,\mathrm dt=-\ln|\csc2t+\cot2t|+C
\displaystyle\int\sec^2t\csc t\,\mathrm dt=\sec t-\ln|\csc t+\cot t|+C
\displaystyle\int\sec^3t\csc t\,\mathrm dt=\frac12\sec^2t+\ln|\tan t|+C

which means the integral above becomes

=3\sqrt3\sec^2t+6\sqrt3\ln|\tan t|-18\sec t+18\ln|\csc t+\cot t|-\sqrt3\ln|\csc2t+\cot2t|-6\ln|\csc t+\cot t|+C
=3\sqrt3\sec^2t-18\sec t+6\sqrt3\ln|\tan t|+12\ln|\csc t+\cot t|-\sqrt3\ln|\csc2t+\cot2t|+C

Back-substituting to get this in terms of x is a bit of a nightmare, but you'll find that, since t=\mathrm{arcsec}\dfrac{x+2}{\sqrt3}, we get

\sec t=\dfrac{x+2}{\sqrt3}
\sec^2t=\dfrac{(x+2)^2}3
\tan t=\sqrt{\dfrac{x^2+4x+1}3}
\cot t=\sqrt{\dfrac3{x^2+4x+1}}
\csc t=\dfrac{x+2}{\sqrt{x^2+4x+1}}
\csc2t=\dfrac{(x+2)^2}{2\sqrt3\sqrt{x^2+4x+1}}

etc.
3 0
3 years ago
If the volume of a box is 2x3 + 4x2 − 30xwhich of the dimensions are possible with the given x-value?
Kipish [7]

The possible value of x = 4, dimensions 8 by 9 by 1 (option D), if the volume of a box is 2 x^{3} + 4 x^{2} -30x.

Step-by-step explanation:

The given is,

                        2 x^{3} + 4 x^{2} -30x................................(1)

Step:1

    Check for option A,

             x = 1, dimensions 8 by 9 by 1  

            From the equation (1),

                      Volume = 2 (1^{3}) + 4 (1^{2} )-30(1)

                                    =2+4-30 = -24...................(2)

            From the dimensions,

                      Volume = ( 8 × 9 × 1 )

                                     = 72............................................(3)

            From equation (2) and (3)

                                -24 ≠ 72

            So, X=1; dimensions 8 by 9 by 1 is not possible.

   Check for option B,

             x = 1, dimensions 2 by 5 by 3

            From the equation (1),

                      Volume = 2 (1^{3}) + 4 (1^{2} )-30(1)

                                    =2+4-30 = -24...................(4)

            From the dimensions,

                      Volume = ( 2 × 5 × 3 )

                                     = 30.........................................(5)

            From equation (4) and (5)

                                -24 ≠ 30

            So, X=1; dimensions 2 by 5 by 3 is not possible.

   Check for option C,

            x = 4, dimensions 2 by 5 by 3

            From the equation (1),

                      Volume = 2 (4^{3}) + 4 (4^{2} )-30(4)

                                    =2(64)+4(16)-30(4)

                                    = 128+64-120

                                    = 72.............................................(6)

            From the dimensions,

                      Volume = ( 2 × 5 × 3 )

                                     = 30............................................(7)

            From equation (6) and (7)

                               72 ≠ 30

            So, X=4; dimensions 2 by 5 by 3 is not possible.

    Check for option C,

            x = 4, dimensions 8 by 9 by 1

            From the equation (1),

                      Volume = 2 (4^{3}) + 4 (4^{2} )-30(4)

                                    =2(64)+4(16)-30(4)

                                    = 128+64-120

                                    = 72............................................(8)

            From the dimensions,

                      Volume = ( 8 × 9 × 1 )

                                    = 72............................................(9)

            From equation (8) and (9)

                               72 = 72

            So, X=4; dimensions 8 by 9 by 3 is possible.

Result:

           The possible value of x = 4, dimensions 8 by 9 by 1 (option D), if the volume of a box is 2 x^{3} + 4 x^{2} -30x.

         

4 0
3 years ago
Use Graphs A-D for Exercises 9-11. During the winter, the amount of water that flows
Morgarella [4.7K]

did u get the awnsers?

6 0
3 years ago
Other questions:
  • How many 0.2 L glasses of water are contained in a3.6 L picture
    15·1 answer
  • If f(x) = 5x – 1, then f^-1(x)=
    12·1 answer
  • A student bought a juice drink for $2 and a sandwich the total was &6.50 how much was the sandwich
    8·1 answer
  • What affect does the "k" value have on the function f(x) = log(x)?
    8·2 answers
  • The graph of an exponential model in the form y = a ⋅ bx passes through the points (2, 50) and (3, 250). Which point is also on
    13·1 answer
  • Find the value of k
    11·1 answer
  • A slow jogger runs a mile in 13 min. Calculate speed in. a) in/s b) Km/h
    10·2 answers
  • 3x+2=11 plz hep im slow in math
    7·1 answer
  • 9. The expression -8x? – 56x written in fully factored form is
    8·1 answer
  • Chuy wants to buy a new television. The television costs $1,350. Chuy decides to save the same amount of money each week, for 27
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!