Answer:
Rotated then reflected.
Step-by-step explanation:
Answer:
198
Step-by-step explanation:
2(9)(11)
Since you know that r = 9 and t = 11, you can substitute the variables to numbers. Then you just multiply to get 198. Hope this helps :)
Given:
Consider the expression are
1) 
2) ![\sqrt[3]{-8}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D)
3) 
4) ![\sqrt[3]{27}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D)
To find:
The simplified form of each expression.
Solution:
1. We have,


Therefore, the value of this expression is 6.
2. We have,
![\sqrt[3]{-8}=(-8)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D%28-8%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{-8}=((-2)^3)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D%28%28-2%29%5E3%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{-8}=(-2)^{\frac{3}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D%28-2%29%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D)
![\sqrt[3]{-8}=-2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D-2)
Therefore, the value of this expression is -2.
3. We have,


Therefore, the value of this expression is -10.
4. We have,
![\sqrt[3]{27}=(27)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D%2827%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{27}=(3^3)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D%283%5E3%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{27}=(3)^{\frac{3}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D%283%29%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D)
![\sqrt[3]{27}=3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D3)
Therefore, the value of this expression is 3.
Answer:
x-3y <u>></u> 5
step-by-step explanation:
Think of it as a normal linear equation first. Let's find the slope.
m = rise/run = (3-1)/(0-1) = -2
We know the slope is negative now, so we can immediately get rid of the first two answers. Now, we know that the solutions must be under the line itself, so we can try figuring it out by testing some points. Let's use (0,0).
Is 0 </> 0+3? Since it's <, then we know the last answer is correct (y < -2x + 3).