Answer:
both the substances will evaporate
Explanation:
Answer:
4
Explanation:
Protein synthesis involves two major steps:
- <em>Transcription of the DNA to mRNA (a form of RNA)</em>
- <em>Translation of the mRNA molecule into a protein.</em>
<em></em>
Transcription involves the formation of a nucleotide sequence complementary to the DNA molecule, with the pairing of a different base, Uracil, with Guanine instead of the usual Thymine base. This occurs in the nucleus of the cell, and the resulting molecule is known as the mRNA.
This mRNA is transported into the cytoplasm through the nuclear pore for the next step, translation. This is primarily accomplished by ribosomes and tRNA molecules which are present in the cytoplasm of the cell. The result of this step is the generation of a protein molecule.
<h3>Hope this helps</h3>
I found another question like this. Someone answered "The best answer to this question is adding a catalyst.
Adding a catalyst will cause the greatest increase in the rate of reaction for this chemical reaction , 8Zn(s) + S8(s) 8ZnS(s). ---> adding a catalyst always affects the rate of a reaction."
Answer:
i think it is all atoms of all elements are exactly alike and have the same mass
Explanation:
Answer:
At equilibrium, the concentration of the reactants will be greater than the concentration of the products. This does not depend on the initial concentrations of the reactants and products.
Explanation:
The value of Kc gives us an idea of the extent of the reaction. A big Kc (Kc > 1) means that in the equilibrium there are more products than reactants, and the opposite happens for a small Kc (Kc < 1). The equilibrium is reached no matter what the initial concentrations are.
The value of the equilibrium constant is relatively SMALL; therefore, the concentration of reactants will be GREATER THAN the concentration of products. This result is INDEPENDENT OF the initial concentration of the reactants and products.