Answer:
Final molarity of iodide ion C(I-) = 0.0143M
Explanation:
n = (m(FeI(2)))/(M(FeI(2))
Molar mass of FeI(3) = 55.85+(127 x 2) = 309.85g/mol
So n = 0.981/309.85 = 0.0031 mol
V(solution) = 150mL = 0.15L
C(AgNO3) = 35mM = 0.035M = 0.035m/L
n(AgNO3) = C(AgNO3) x V(solution)
= 0.035 x 0.15 = 0.00525 mol
(AgNO3) + FeI(3) = AgI(3) + FeNO3
So, n(FeI(3)) excess = 0.00525 - 0.0031 = 0.00215mol
C(I-) = C(FeI(3)) = [n(FeI(3)) excess]/ [V(solution)] = 0.00215/0.15 = 0.0143mol/L or 0.0143M
Answer:
1.7 * 10^-5
Explanation:
1- get the number of moles of PbCl2:
number of moles = mass / molar mass
number of moles = 0.45 / 278.1 = 1.618 * 10^-3 moles
2- get the concentration of Pb2+:
molarity = number of moles of solute / volume of solution in liters
molarity = (1.618 * 10^-3) / (0.1) = 0.0162 M
3- getting concentration of Cl-:
<span>PbCl2(s) <==> Pb2+(aq) + 2Cl-(aq)
</span>We can note that:
For a certain amount of Pb2+ formed, twice this amount of Cl- is formed.
This means that:
for 0.0162 M of Pb2+, 2*0.0168 = 0.0324 M of Cl- is formed
4- getting Ksp:
Ksp = [Pb2+][Cl-]²
Ksp = (0.0162)*(0.0324)²
Ksp = 1.7 * 10^-5
Hope this helps :)
Answer:
Appearance. Pure rock salt is colorless. However, when found underground it is generally not completely pure, so may have yellow, red, gray or brown hues. It is either transparent or translucent and when you shine a light on it, its luster is vitreous, meaning it appears shiny and glassy.
Explanation:
Answer:
1. Earth
2. Sun
3. Sun
4. Earth
5. Earth
6.Sun
7. Earth
Explanation:
I'm a lil sus of 3 and 6 but I'm pretty sure it's right.