1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
2 years ago
5

Prove :

Mathematics
1 answer:
Sauron [17]2 years ago
7 0

Answer:

See Below.

Step-by-step explanation:

We want to verify the equation:

\displaystyle \frac{1}{\sec\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

We can convert sec(α) to 1 / cos(α):

\displaystyle \frac{1}{1/\cos\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Multiply both layers of the first fraction by cos(α):

\displaystyle \frac{\cos\alpha}{1+\cos\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Create a common denominator. We can multiply the first fraction by (1 - cos(α)):

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{(1+\cos\alpha)(1-\cos\alpha)}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Simplify:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{1-\cos^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

From the Pythagorean Identity, we know that cos²(α) + sin²(α) = 1 or equivalently, 1 - cos²(α) = sin²(α). Substitute:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{\sin^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Subtract:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Distribute:

\displaystyle \frac{\cos\alpha-\cos^2\alpha-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Rewrite:

\displaystyle \frac{(\cos\alpha)-(\cos^2\alpha+\cos\alpha)}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Split:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos^2\alpha+\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Factor the second fraction, and substitute sin²(α) for 1 - cos²(α):

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{1-\cos^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Factor:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{(1-\cos\alpha)(1+\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Cancel:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha}{(1-\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Divide the second fraction by cos(α):

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}=\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Hence proven.

You might be interested in
Which choice could be used in proving that the given triangles are similar?
Vadim26 [7]

Answer: . To prove triangles are similar, you need to prove two pairs of corresponding angles are congruent

Step-by-step explanation:

SSS similarity postulate

The SSS similarity postulate says that if the lengths of the corresponding sides of two triangles are proportional then the triangles must be similar.

In the given figure , we have two triangles ΔABC and ΔXYZ such that the corresponding sides of both the triangles are proportional.

i.e.

Then by SSS-similarity criteria , we have

ΔABC ≈ ΔXYZ

BRAINLIEST PLEASE????

5 0
2 years ago
Which is the approximate measure of this angle? <br> a. 30° <br> b. 80° <br> c. 120° <br> d. 150°?
Simora [160]
I think the answer is D 150 degrees
7 0
3 years ago
What adds to 6 and multiplies to 18
kirill115 [55]
That has to be impossible because you can’t get any solution that would possible add to 6
7 0
3 years ago
Read 2 more answers
Find the value of x.
Paul [167]

Hello!

As we are looking for the opposite side and hypotenuse, we will use the sine.

sin30=1/2

This gives us the equation below.

1/2= 5/x

1/2x=5

x=10

Therefore, x=10.

I hope this helps!

6 0
3 years ago
Read 2 more answers
B - 1/8= 3 1/2 <br><br><br> what’s b equal
svlad2 [7]
In fraction
b= 29/8
decimal
b= 3.625
another’s fraction
b= 3 5/8
4 0
3 years ago
Other questions:
  • 14 is 28% of what number
    7·1 answer
  • What is the value of the expression 10 + (fraction 1 over 2)4 ⋅ 48?
    5·1 answer
  • Suppose you are driving due east, traveling a distance of 1500 m in 2 minutes. You then turn due north and travel the same dista
    14·1 answer
  • Mrs. Kellen's most recent math test consisted of 50 questions. Some of the questions were worth two points and the rest of the q
    6·1 answer
  • What is the form of slope intercept form. y=mx+b?
    15·1 answer
  • 50 points Type the correct answer I’m the box
    8·2 answers
  • Will Mark Brainlest help pleaseeeeee​
    15·2 answers
  • Is the correct answer a) 6 or c) 1/6?
    7·1 answer
  • Find the length of the diagonal of the rectangle. Round your answer to the nearest tenth
    7·1 answer
  • (1 + sinA)²-(1 – sinA)²=4sinA​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!