Answer:
a) Only the first one is an identity.
Step-by-step explanation:
1). 8 cos O tan O csc O = 8 simplifies to:
cos O tan O csc O = 1
cos O * (sin O / cos O) * (1 /sin O)
= cos O sin O / cos O sin O
= 1
So it is identity.
2) 13 sec^2 O/ cos^2 O - tan^2 O / cos^2O
= 13 sec^2 O - tan^2 O / cos^2 O
Now sec^2 O = 1 + tan^2 O, so we have:
(13( 1 + tan^2 O) - tan^2 O) / cos^2 O
= (12 tan^2 O + 13) / cos^2 O
This is not always = 2 so its not an identity.
<h3>Function 1 : </h3>
Observe the abscicca and ordinates
<u>*</u><u>Note</u><u> </u><u>that</u><u>:</u><u>-</u><u> </u><em>y-coordinate</em><em> </em><em>is</em><em> </em><em>ordinate</em><em> </em><em>and</em><em> </em><em>x-coordinate</em><em> </em><em>is</em><em> </em><em>abscicca</em><em>.</em>
- The ordinate having 0 as abscicca in function 1 is (0,1), Thus.. The y-intercept is 1
<h3>
Function 2 : </h3>
Observe the graph and mark the point where function meets y-axis
<u>*</u><u>Note</u><u> </u><u>that</u><u>:</u><u>-</u><u> </u><em>The</em><em> </em><em>point</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>graph</em><em> </em><em>where</em><em> </em><em>the</em><em> </em><em>function</em><em> </em><em>meets</em><em> </em><em>y-axis</em><em> </em><em>is</em><em> </em><em>called</em><em> </em><em>y-intercept</em><em>.</em>
- The point where the function meets is (0,1). Therefore, The y-intercept of function 2 is also 1

<em><u>Thus, Option C is the correct choice!!~</u></em>
Answer:
X=-1
Step-by-step explanation:
It’ll probably look like this if so..