Answer:
So that oxidation of pyruvate can take place in mitochondria.
Explanation:
Pyruvates is produced in the glycolysis process which occurs in the cytoplasm. So pyruvate is produced in the cytoplasm of the cell. Pyruvate is produced by partial oxidation of glucose and to be fully oxidized it has to enter in the mitochondria.
So after entering the mitochondria the pyruvate first converts into acetyl CoA than this acetyl CoA enters in the citric acid cycle and fully oxidized into CO2. This oxidation generated NADP and FADH2 which provide reducing power during oxidative phosphorylation.
The difference in concentration between solutions on either side of a cell membrane is a concentration gradient.
In the field of biology, a concentration gradient can be described as a difference in the concentration of molecules inside and outside of a cell. It is due to concentration gradient that molecules move into and out of a cell through the cell membrane.
Some molecules move from an area of higher concentration gradient to an area of lower concentration along the concentration gradient. Diffusion is an example of such a process.
On the other hand, some molecules move from an area of lower concentration to an area of higher concentration against the concentration gradient. Active transport is an example of such a process.
To learn more about concentration gradient, click here:
brainly.com/question/13814995
#SPJ4
Spherical shaped bacteria are known as coccus bacteria.