Answer:
77,786.251
Step-by-step explanation:
The easiest way to do the fractions is is you turn them to decimals.
43. >
44. >
You think it might be the othe way around, but it’s a negative. So if it’s -36 and -35, the -35 will be bigger. Think about the number line. -36 comes before -35.
Let's solve your equation step-by-step.
Question 1: −2(6−2x) =4(−3+x)
Step 1: Simplify both sides of the equation.
−2(6−2x) =4(−3+x)
(−2) (6) +(−2) (−2x) =(4)(−3)+(4)(x)(Distribute)
−12+4x=−12+4x
4x−12=4x−12
Step 2: Subtract 4x from both sides.
4x−12−4x=4x−12−4x
−12=−12
Step 3: Add 12 to both sides.
−12+12=−12+12
0=0
Answer: All real numbers are solutions.
Question 2:
Let's
solve your equation step-by-step.
5−1(2x+3)
=−2(4+x)
Step 1:
Simplify both sides of the equation.
5−1(2x+3)
=−2(4+x)
5+(−1)
(2x) +(−1) (3) =(−2) (4)+(−2)(x)(Distribute)
5+−2x+−3=−8+−2x
(−2x)
+(5+−3) =−2x−8(Combine Like Terms)
−2x+2=−2x−8
−2x+2=−2x−8
Step 2:
Add 2x to both sides.
−2x+2+2x=−2x−8+2x
2=−8
Step 3:
Subtract 2 from both sides.
2−2=−8−2
0=−10
Answer: There are no solutions.
Answer:
- vertex (3, -1)
- y-intercept: (0, 8)
- x-intercepts: (2, 0), (4, 0)
Step-by-step explanation:
You are being asked to read the coordinates of several points from the graph. Each set of coordinates is an (x, y) pair, where the first coordinate is the horizontal distance to the right of the y-axis, and the second coordinate is the vertical distance above the x-axis. The distances are measured according to the scales marked on the x- and y-axes.
__
<h3>Vertex</h3>
The vertex is the low point of the graph. The graph is horizontally symmetrical about this point. On this graph, the vertex is (3, -1).
<h3>Y-intercept</h3>
The y-intercept is the point where the graph crosses the y-axis. On this graph, the y-intercept is (0, 8).
<h3>X-intercepts</h3>
The x-intercepts are the points where the graph crosses the x-axis. You will notice they are symmetrically located about the vertex. On this graph, the x-intercepts are (2, 0) and (4, 0).
__
<em>Additional comment</em>
The reminder that these are "points" is to ensure that you write both coordinates as an ordered pair. We know the x-intercepts have a y-value of zero, for example, so there is a tendency to identify them simply as x=2 and x=4. This problem statement is telling you to write them as ordered pairs.