Answer:

We can find the second moment given by:

And we can calculate the variance with this formula:
![Var(X) =E(X^2) -[E(X)]^2 = 7.496 -(2.5)^2 = 1.246](https://tex.z-dn.net/?f=%20Var%28X%29%20%3DE%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%207.496%20-%282.5%29%5E2%20%3D%201.246)
And the deviation is:

Step-by-step explanation:
For this case we have the following probability distribution given:
X 0 1 2 3 4 5
P(X) 0.031 0.156 0.313 0.313 0.156 0.031
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
We can verify that:

And 
So then we have a probability distribution
We can calculate the expected value with the following formula:

We can find the second moment given by:

And we can calculate the variance with this formula:
![Var(X) =E(X^2) -[E(X)]^2 = 7.496 -(2.5)^2 = 1.246](https://tex.z-dn.net/?f=%20Var%28X%29%20%3DE%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%207.496%20-%282.5%29%5E2%20%3D%201.246)
And the deviation is:

Slope of 4 means you add 4 to the y and 1 to the x so the answer is (-1,9)
"He got a big hand" thats the answer
Answer:
x=3
Step-by-step explanation:
-8x - 1= -25
Add 1 to each side
-8x-1+1 = -25+1
-8x = -24
Divide each side by -8
-8x/-8 = -24/-8
x = 3
Answer:
19.666666666
round up to
20 or 19.7 depending on how they want you to round
Step-by-step explanation: