Answer:
a_n=-\frac{1}{4 a_{n-1}
Step-by-step explanation:
The recursive formula for the geometric sequence is given by:
a_n = a_{n-1} \cdot r
where,
r is the common ratio terms
-16, 4, -1, ...
This is a geometric sequence.
Here, and
Since,
ans so on .....
Substitute the given values we have;
⇒
Therefore, the recursive formula for the following geometric sequence is,
Answer:
B. g(x) = (x-2)^2 +1
Step-by-step explanation:
When you see this type of equation your get the variables H and K in a quadratic equation. In this case the (x-2)^2 +1 is your H. The (x-2)^2 +1 is your K.
For the H you always do the opposite so in this case instead of going to the left 2 times you go to the right 2 times (affects your x)
For the K you go up or down which in this case you go up one (affects your y)
And that's how you got your (2,1) as the center of the parabola
-Hope this helps :)
Answer:
sorry sir i really dont even understand
and you graph it from -4 to the right with close circle
Hope this help