Answer:
The proportions differ from those reported in the survey.
Step-by-step explanation:
The Chi-square goodness of fit test would be used to determine whether the proportions differ from those reported in the survey.
The hypothesis for the test can be defined as follows:
<em>H</em>₀: The proportions does not differ from those reported in the survey.
<em>Hₐ</em>: The proportions differ from those reported in the survey.
Assume that the significance level of the test is, α = 0.01.
The Chi-square test statistic is given by:

Consider the Excel sheet provided.
The Chi-square test statistic value is 191.32.
The <em>p</em>-value of the test is:

The <em>p</em>-value of the test is very small. The null hypothesis will be rejected at 1% level of significance.
Thus, concluding that the proportions differ from those reported in the survey.
7. x=3 is the midpoint between the roots. The other root is x = 2*3 -(-5) = 11.
8a) f(x) = (x +3)^2 -49. The vertex is (-3, -49). The roots are -10, 4.
8b) y = (x+4)^2 -1. The vertex is (-4, -1). The roots are -5, -3.
8c) f(x) = 2(x +3)^2 -34. The vertex is (-3, -34). The roots are -3±√17.
Answer:
-14
Step-by-step explanation:
Multiply the is together. Multiply the j's together. Add the answer. The answer is a scalar.
(7 × -2) + (5 × 0)
= -14
To identify the function that contains the data in the table, we should first visualize the data.
A graph of the data is shown below:
From the plot above, we can identify that:
The graph above is a graph of f(x) = |x|, translated to the right 2 units and translated upwards 1 unit.
Hence, the function is:

Answer:
Option D