1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
2 years ago
6

Can someone please help me please I really need help please answer it correctly

Mathematics
1 answer:
kvv77 [185]2 years ago
7 0

Answer:

<h3>Princeton Florist</h3>

Let the total charge is y, the number of small arrangements is x.

<u>Total charge will be:</u>

  • y = 13x + 47
<h3>Chad's Flowers</h3>

<u>Total charge will be:</u>

  • y = 17x + 35

<u>Since the total charge is same in both shops, we have:</u>

  • 13x + 47 = 17x + 35

<u>Solve for x:</u>

  • 17x - 13x = 47 - 35
  • 4x = 12
  • x = 3

<u>Total cost is:</u>

  • 13*3 + 47 = 39 + 47 = 86

<u>Small arrangements</u> = 3, <u>cost </u>= $86

You might be interested in
30 mins = how many seconds???
horrorfan [7]
6x3=18 add two zeros and you get 1800 seconds:) hope this helped
8 0
2 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
The sum of two numbers is 15. The product of the two numbers is 36. What are the numbers? The larger number is . The smaller num
nikitadnepr [17]

Answer:

The numbers are 12 and 3.

Step-by-step explanation:

12+3=15

&

3×12= 36

:)

7 0
3 years ago
Read 2 more answers
What property justifies that <br> 6<br> x<br> +<br> 9<br> 3<br> =<br> 2<br> x<br> +<br> 3<br> ?
NNADVOKAT [17]

Answer:

Distributive Property

Step-by-step explanation:

Brainliest Please!

7 0
2 years ago
The diameter of a circle is 32 millimeters. What is the circle's area?
Alexandra [31]

Answer:

803.84 bc radius is half of diameter which is 16

Area of circle is (pi)r^2 = (3.14)16^2= 3.14 x 256 = 803.84

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • Cual expresion es equivalente a 5n+8 when n is equal 2
    15·1 answer
  • George and Carmen went on a bicycle trip. they took a bus to their starting point, and then biked the rest. they traveled 325 ki
    11·1 answer
  • I need help with 1-4
    7·1 answer
  • Plz help me I will be giving a brainliest to the first person to answer​
    9·2 answers
  • What is the additive of -7
    10·2 answers
  • Pls help this is due today and need help please. ​
    11·1 answer
  • Vance is designing a garden in the shape of an isosceles triangle. The base of the garden is 30 feet long. The function y = 15 t
    9·1 answer
  • What are the zeros of the polynomial function? f(x)=(x+4) (x−4) (x+5)
    5·1 answer
  • HELP WILL GIVE BRAINEIST
    12·1 answer
  • How would you teach something you have learned this year in Math to someone younger than you? Write more than 5 sentences.​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!