1. -1/3 - (-1/2) = .16666666666666
2. -8
Hope it helps, if you need it in fractions, you can always convert it :)
The equation for slope is:
(y2 - y1) / (x2 - x1)
-2 -(-7) = 5
-9 -(-1) = -8
Slope of the line:
5/-8 or -5/8
Using the t-distribution to build the 99% confidence interval, it is found that:
- The margin of error is of 3.64.
- The 99% confidence interval for the population mean is (19.36, 26.64).
<h3>What is a t-distribution confidence interval?</h3>
The confidence interval is:

In which:
is the sample mean.
- s is the standard deviation for the sample.
The critical value, using a t-distribution calculator, for a two-tailed 95% confidence interval, with 21 - 1 = 20 df, is t = 2.086.
The other parameters are given as follows:

The margin of error is given by:

Hence the bounds of the interval are:


The 99% confidence interval for the population mean is (19.36, 26.64).
More can be learned about the t-distribution at brainly.com/question/16162795
#SPJ1
Start by decomposing the number inside the root into primes
Then group the terms into cubes if possible

rewrite the root
![\sqrt[3]{80}=\sqrt[3]{10\cdot2^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B80%7D%3D%5Csqrt%5B3%5D%7B10%5Ccdot2%5E3%7D)
then cancel the terms that are cubes and bring them out of the root
Answer:
Option c, A square matrix
Step-by-step explanation:
Given system of linear equations are



Now to find the type of matrix can be formed by using this system
of equations
From the given system of linear equations we can form a matrix
Let A be a matrix
A matrix can be written by
A=co-efficient of x of 1st linear equation co-efficient of y of 1st linear equation constant of 1st terms linear equation
co-efficient of x of 2st linear equation co-efficient of y of 2st linear equation constant of 2st terms linear equation
co-efficient of x of 3st linear equation co-efficient of y of 3st linear equation constant of 3st terms linear equation 
which is a
matrix.
Therefore A can be written as
A= ![\left[\begin{array}{lll}3&-2&-2\\7&3&26\\-1&-11&46\end{array}\right] 3\times 3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Blll%7D3%26-2%26-2%5C%5C7%263%2626%5C%5C-1%26-11%2646%5Cend%7Barray%7D%5Cright%5D%203%5Ctimes%203)
Matrix "A" is a
matrix so that it has 3 rows and 3 columns
A square matrix has equal rows and equal columns
Since matrix "A" has equal rows and columns Therefore it must be a square matrix
Therefore the given system of linear equation forms a square matrix