Something that a right triangle is characterised by is the fact that we may use Pythagoras' theorem to find the length of any one of its sides, given that we know the length of the other two sides. Here, we know the length of the hypotenuse and one other side, therefor we can easily use the theorem to solve for the remaining side.
Now, Pythagoras' Theorem is defined as follows:
c^2 = a^2 + b^2, where c is the length of the hypotenuse and a and b are the lengths of the other two sides.
Given that we know that c = 24 and a = 8, we can find b by substituting c and a into the formula we defined above:
c^2 = a^2 + b^2
24^2 = 8^2 + b^2 (Substitute c = 24 and a = 8)
b^2 = 24^2 - 8^2 (Subtract 8^2 from both sides)
b = √(24^2 - 8^2) (Take the square root of both sides)
b = √512 (Evaluate 24^2 - 8^2)
b = 16√2 (Simplify √512)
= 22.627 (to three decimal places)
I wasn't sure about whether by 'approximate length' you meant for the length to be rounded to a certain number of decimal places or whether you were meant to do more of an estimate based on your knowledge of surds and powers. If you need any more clarification however don't hesitate to comment below.
Answer:
P( sum is prime )= 73/216
Step-by-step explanation:
The minimum value of the sum will be 3 and maximum value will be 18. So the prime numbers in this range are 3 , 5, 7, 11, 13, 17.
P(sum=3)=1/216, P(sum=5)=6/216, P(sum=7)=15/216, P(sum=11)=27/216, P(sum=13)=21/216, P(sum=17)=3/216.
The final probability will be sum of the above given probabilities.
Hence P( sum is prime )= 73/216
Answer:
x=0.00784
Step-by-step explanation:
9514 1404 393
Answer:
A) 5x+12 = -12x-12
D) 5x+12 = -5x-12
Step-by-step explanation:
If you subtract the right side expression from both sides, you will get an equation with something equal to zero. If the 'something' has a variable in it, there is exactly one solution.
A: (5x+12) -(-12x-12) = 17x+24 = 0 . . . one solution
B: (5x+12) -(5x-5) = 17 = 0 . . . . no solutions
C: (5x+12)-(5x+12) = 0 = 0 . . . . infinite solutions
D: (5x+12) -(-5x-12) = 10x +24 = 0 . . . one solution