Answer:
BẠN BỊ ĐIÊN À
Step-by-step explanation:
CÚT
Answer: 0.5898
Step-by-step explanation:
Given : J.J. Redick of the Los Angeles Clippers had a free throw shooting percentage of 0.901 .
We assume that,
The probability that .J. Redick makes any given free throw =0.901 (1)
Free throws are independent.
So it is a binomial distribution .
Using binomial probability formula, the probability of getting success in x trials :

, where n= total trials
p= probability of getting in each trial.
Let x be binomial variable that represents the number of a=makes.
n= 14
p= 0.901 (from (1))
The probability that he makes at least 13 of them will be :-

![=^{14}C_{13}(0.901)^{13}(1-0.901)^1+^{14}C_{14}(0.901)^{14}(1-0.901)^0\\\\=(14)(0.901)^{13}(0.099)+(1)(0.901)^{14}\ \ [\because\ ^nC_n=1\ \&\ ^nC_{n-1}=n ]\\\\\approx0.3574+0.2324=0.5898](https://tex.z-dn.net/?f=%3D%5E%7B14%7DC_%7B13%7D%280.901%29%5E%7B13%7D%281-0.901%29%5E1%2B%5E%7B14%7DC_%7B14%7D%280.901%29%5E%7B14%7D%281-0.901%29%5E0%5C%5C%5C%5C%3D%2814%29%280.901%29%5E%7B13%7D%280.099%29%2B%281%29%280.901%29%5E%7B14%7D%5C%20%5C%20%5B%5Cbecause%5C%20%5EnC_n%3D1%5C%20%5C%26%5C%20%5EnC_%7Bn-1%7D%3Dn%20%5D%5C%5C%5C%5C%5Capprox0.3574%2B0.2324%3D0.5898)
∴ The required probability = 0.5898
The question says that the end of the cave is 380 meters below.
Lets say the sea level or the surface is at 0 meters or we can say that it is the reference level for us.
Now if we go up the height will be measured with positive integer but if we go down the depth will be represented by a negative integer.
Negative integer also represents the depth or the distance below the surface level.
Here we need to generate an integer that can represent the depth of 380 meters.
So if we are going down we will use negative integer to represent.
Therefore, the integer to represent the depth is
meters.