1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klemol [59]
2 years ago
15

I DESPERATELY NEED HELP PLZ ANSWER THESE QUESTIONS I AM TIMED AND DON"T HAVE MUCH TIME LEFT

Mathematics
1 answer:
Marina CMI [18]2 years ago
5 0

Answer:

Ok I will help you answer the first one the rest yourself?

Step-by-step explanation:

So the question is

6(r-s+t)

we have to time each number by 6

6r-6s+6t

That's how we can simply so the answer is 6r-6s+t

Same thing goes with the others

Hope it helps 0w0

You might be interested in
Please help . tjjhhhhhhhh
natka813 [3]

Answer:

19 -  8√3

Step-by-step explanation:

(-4 + √2)^2

= (-4)^2 + 2(-4)(√3) + √3)^2

= 16 - 8√3 + 3

= 19 -  8√3

7 0
3 years ago
Read 2 more answers
How do you solve this ?
Inga [223]
2.) y = x - 12

3.) 2x + 6

6 0
3 years ago
Can someone help me with this and have it step by step please
Sladkaya [172]

Answer:

should also be 40

Step-by-step explanation:

the measure of angle 1 is equivelent to angle two, since they both lie ont he same line.

8 0
3 years ago
Today Jason has 123 stamps in his collection. He got 5 stamps at a show last week. Then he got 4 more stamps at a show this week
lozanna [386]
114 stamps he had before
3 0
3 years ago
Read 2 more answers
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
Other questions:
  • Who knows this please!!!
    13·1 answer
  • Now, I have a questions for you, this is question 1
    10·1 answer
  • PLEASE HURRY WILL GIVE BRAINLIEST!!<br><br> What is the surface area of this rectangular prism?
    9·2 answers
  • I need help on problem called irrational numbers​
    5·1 answer
  • Write the slope-intercept form of the equation of the line perpendicular to the graph of y=-3/2x-7 that passes through (3,-2)
    5·1 answer
  • Please help ASAP :)))))
    13·1 answer
  • Which statement best describes the association between variable X and variable Y? Question 2 options: perfect negative associati
    10·1 answer
  • What is the solution to the system of equations? <br> 2x+4y=12<br> Y=1/2x-3
    6·1 answer
  • Hiii please help asap ill give brainliest if you give a correct answer tyyyyy
    12·1 answer
  • A colony of bees doubles in size every month. If there are initially 5000 bee, create a model for the bee population
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!