![\boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>
Explanation:</h2>
Here we have the following expression:
![\sqrt[4]{48p^7d^5}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D)
So we need to simplify it:
![\sqrt[4]{48p^7d^5} \\ \\ \\ We \ can \ write: \\ \\ p^7=p^4\cdot p^3 \\ \\ d^5=d^4\cdot d \\ \\ \\ So: \\ \\ \sqrt[4]{48p^4\cdot p^3\cdot d^4\cdot d} \\ \\ \\ By \ property: \\ \\ \sqrt[n]{x^n}=x \\ \\ \\ Finally: \\ \\ \boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D%20%5C%5C%20%5C%5C%20%5C%5C%20We%20%5C%20can%20%5C%20write%3A%20%5C%5C%20%5C%5C%20p%5E7%3Dp%5E4%5Ccdot%20p%5E3%20%5C%5C%20%5C%5C%20d%5E5%3Dd%5E4%5Ccdot%20d%20%5C%5C%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5B4%5D%7B48p%5E4%5Ccdot%20p%5E3%5Ccdot%20d%5E4%5Ccdot%20d%7D%20%5C%5C%20%5C%5C%20%5C%5C%20By%20%5C%20property%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx%20%5C%5C%20%5C%5C%20%5C%5C%20Finally%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>Learn more:</h2>
Mathematical expressions: brainly.com/question/14200575#
#LearnWithBrainly
Answer:
The answer to your question is: letter A
Step-by-step explanation:
From the graph we get the points,
P (2,1)
Q (6,8)
Formula
d = √((x2-x1)² + (y2-y1)²)
d = √((6-2)² + (8-1)²)
d = √ (4² + 7²)
d = √ (16 + 49
d = √65 letter A
Answer:
suggestions use algebra calculator or mathaway they will help u and give you the answer
Answer:
5 seconds
Step-by-step explanation:
Looking at your function (h(t) = -16t^2 + 48t + 160), I see that the peak height will be 196 feet, and that is achieved in 1.5 seconds.
h(1.5) = -16(1.5)^2 + 48(1.5) + 160
h(1.5) = -16(2.25)+ 48(1.5) + 160
h(1.5) = -36 + 48(1.5) + 160
h(1.5) = -36 + 72 + 160
h(1.5) = 36 + 160
h(1.5) = 196
Going down from that height, it would take 3.5 more seconds, so it would take 5 seconds in total
h(5) = -16(5)^2 + 48(5) + 160
h(5) = -16(25) + 48(5) + 160
h(5) = -400 + 48(5) + 160
h(5) = -400 + 240 + 160
h(5) = -400 + 400
h(5) = 0