1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
3 years ago
11

My feet are asleep,,,.T.T, I'm also stressed and cold and tired​

Mathematics
1 answer:
Vedmedyk [2.9K]3 years ago
4 0

Answer:

Ok its friday be happy

Step-by-step explanation:

You might be interested in
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Solve the linear equation below for x. *<br> 3x + 4 = 8x – 9<br> A. 2.6 B. 1 C. 1.09 D. 2
Juli2301 [7.4K]
This answer is A, first you subtract 3x from both sides simplify 8x-9-3x to 5x-9, add 9 to both sides, simplify 4+9 to 13, divided both sides by 5 and you’ll get 2.6
6 0
3 years ago
What is the value of the function at x=−2?
Elza [17]

The value of the function is the Y value where the line crosses the given X value.

When X is at -2, the line is on Y = 3


The answer would be y =3

3 0
3 years ago
Find the gradient of the line segment between the points (3,-2) and (5,-5). Give your answer in its simplest form.
Paraphin [41]

Answer:

2/7

Step-by-step explanation:

gradient y²-y¹/x²-x¹=4-2/4-(-3)

=2/7

{Taking (x¹,y,¹)=(-3,2)

and(x²-y²)=(4,4)

4 0
3 years ago
Write a fraction equivalent of 1/7
Ostrovityanka [42]

Answer:

2/14

Step-by-step explanation:

it is the correct answer for the above mentioned questions

7 0
3 years ago
Read 2 more answers
Other questions:
  • A rectangular board is 1.5 meters long and 0.8 meters wide. What is the area of the board in square millimeters? Do not round yo
    12·2 answers
  • Rachel is 40 cm taller than Lucy. Rachel is 25 percent taller than Lucy. How tall is Lucy? Explain
    12·1 answer
  • Find the domain and range of the exponential function h(x) = 125 x
    6·1 answer
  • What is the area of the figure?
    11·2 answers
  • What is -3 2/3 × (-2 1/4)​
    6·2 answers
  • The student council at Spendtoomuch High School is
    10·1 answer
  • Shelley charges $13 an hour to babysit kids in her neighborhood. Which ordered pairs represent the time she works, in hours, and
    13·1 answer
  • Solve for x if a≠0, a≠3:<br> 3-a/x-a=1/a<br> (a picture will be provided as well)
    13·1 answer
  • Anyone know how to do this?
    10·1 answer
  • How many like terms are in the expression?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!