Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)
Answer: 41 degrees
Step-by-step explanation:
measure of angles in a triangle is 180 degrees
So
87 + 52 + ? = 180
139 + ? = 180
? = 41
Answer:
Train A = 214
Train B = 86
Step-by-step explanation:
a + b = 300
a - b = 128
a + b = 300
a = 128 + b
(128 + b) + b = 300
128 + b + b = 300
128 + 2b = 300
2b = 300 - 128
2b = 172
b = 172 ÷ 2
b = 86
a = 128 + b
a = 128 + (86)
a = 214
Answer:
-4.2
Step-by-step explanation: