The number of cars that sold on the third week is (P3=26)
The number of cars that sold on the first week is (P4=33)
<u>Step-by-step explanation:</u>
<u>Given:</u>
- The number of cars that sold on the first week is (P0=7)
- The number of cars that sold on the second week is (P0=12)
We have to find the number of cars being sold on the upcoming week
From the data given above, frame the equation
Pn = Pn −1+7 ( 12-5=7 it denotes the cars sold in the first and the second week)
Pn=5+7n (cars in the first week and the cars sold in the second week into "n" n is used to find the cars sold in the upcoming weeks)
(If n=3)
Pn=5+7(3)
Pn=26
The number of cars that sold on the third week is (P3=26)
(If n=4)
Pn=5+7(4)
Pn=33
The number of cars that sold on the first week is (P4=33)
Answer:
C) 0 ≤ x ≤ 25
Step-by-step explanation:
We are supposed to find a reasonable constraint so that the function is at least 300 i.e. the value of x at which f(x) is greater or equal to 300
A)x ≥ 0
Refer the graph
At x = 0
f(x)=300
On increasing the value of x , f(x) increases but at x = 12 it starts decreasing
So, x ≥ 0 can also have f(x)<300
So, Option A is wrong
B)−5 ≤ x ≤ 30
At x = -5
f(x) = 100
So, Option B is wrong since we require f(x) is greater or equal to 300
c)0 ≤ x ≤ 25
At x = 0
f(x)=300
At x = 12 , it starts decreasing
At x = 25
f(x)=300
So, The value of f(x) is at least 300 when 0 ≤ x ≤ 25
D)All real numbers
At x = 30
f(x)=0
But we require f(x) greater or equal to 300
Hence Option C is true
Yes. The situation is defined by a linear function.
<u>Solution:</u>
Given, The weekly salary of a store manager includes a $30 bonus plus the number of hours the manager works multiplied by the managers earnings per hour.
Is this situation defined by a linear function?
Yes, the above given situation is defined by a linear function.
Now, let us see the linear equation for above situation
Let the number of hours worked by manager be "x", and cost per hour be "c" and total salary be "y"
Then, total salary is given as,
Total salary = $ 30 bonus + number of hours worked
cost per hour

Above equation is a linear equation as "c" is constant ( cost per hour )
Hence, the given situation can be defined by linear function.
Answer: Y= 2x
Step-by-step explanation:
1 x 2 = 2
3.4 x 2 = 6.8
5 x 2 = 10
7 x 2 = 14
So. Y = 2x