Cooperation is common in non-human animals. Besides cooperation with an immediate benefit for both actors, this behavior appears to occur mostly between relatives.[1] Spending time and resources assisting a related individual may at first seem destructive to the organism’s chances of survival but is actually beneficial over the long-term. Since relatives share part of their genetic make-up, enhancing each other’s chances of survival may actually increase the likelihood that the helper’s genetic traits will be passed on to future generations.[6] The cooperative pulling paradigm is an experimental design used to assess if and under which conditions animals cooperate. It involves two or more animals pulling rewards towards themselves via an apparatus they can not successfully operate alone.[7]
Answer:
The color of the surfaces because an object with a black surface will absorb and reradiate energy faster and at a higher concentration than the same object with a lighter colored surface.
Answer:
In this case, it is likely that the polypeptide chain assumed an alpha helix configuration because the lipid bilayer did not have beta-barrel proteins.
Explanation:
A polypeptide chain is naturally polar, however, a lipid bilayer is naturally non-polar. This makes it difficult and even prevents the polypeptide chain from crossing a lipid bilayer, since the composition of these two elements does not allow them to mix. In that case, the polypeptide chain has two options to take to successfully cross the lipid bilayer.
The first option that the polypeptide chain has is to allow the creation of twisted beta sheets in the shape of a closed barrel in its structure. This only works if the lipid bilayer has beta barrel proteins in its composition to act as a transport channel for the polypeptide chain. However, few lipid layers have this protein.
Most likely, the polypeptide chain assumes an alpha helix conformation to cross lipid bilayers that do not have beta-barrel proteins. By assuming the beta conformation, the polypeptide chain reinforces the hydrogen bonds present in its composition, allowing it to cross the lipid bilayer without having its conformation and structure disassembled.