Answer:
Step-by-step explanation:
a. scalene : Reason: all angles and sides are different measurements.
f. acute
: all the three angles are acute (Less than 90)
Comment
You need to set up a direct proportion. You have to relate Keith and Jared's ages to the ratio you were given.
Givens
Keith is 24
Keith / Jared = 3/5
J = Jared
Solution
3/5 = 24 / J Cross multiply
3*J = 5 * 24 Combine factors on the right.
3J = 120 Divide by 3
J = 120 / 3
J = 40
Conclusion
Jared is 40 years old.
0° 42' 48.6".
Conversion: d = int(.7135°) = 0°m = int((.7135° - 0°) × 60) = 42's = (.7135° - 0° - 42'/60) × 3600 = 48.6".7135°= 0° 42' 48.6"
How to convert decimal degrees to degrees,minutes,secondsOne degree (°) is equal to 60 minutes (') and equal to 3600 seconds ("):
1° = 60' = 3600"
The integer degrees (d) are equal to the integer part of the decimal degrees (dd):
d = integer(dd)
The minutes (m) are equal to the integer part of the decimal degrees (dd) minus integer degrees (d) times 60:
m = integer((dd - d) × 60)
The seconds (s) are equal to the decimal degrees (dd) minus integer degrees (d) minus minutes (m) divided by 60 times 3600:
s = (dd - d - m/60) × 3600
Well you equal out the two angles to each other and solve for x. then you just plug the the number you got for x back into the equations to get your answers
the way I get the subsequent term, nevermind the exponents, the exponents part is easy, since one is decreasing and another is increasing, but the coefficient, to get it, what I usually do is.
multiply the current coefficient by the exponent of the first-term, and divide that by the exponent of the second-term + 1.
so if my current expanded term is say 7a³b⁴, to get the next coefficient, what I do is (7*3)/5 <----- notice, current coefficient times 3 divided by 4+1.
anyhow, with that out of the way, lemme proceed in this one.

so, following that to get the next coefficient, we get those equivalents as you see there for the 2nd and 3rd terms.
so then, we know that the expanded 2nd term is 24x therefore

we also know that the expanded 3rd term is 240x², therefore we can say that

but but but, we know what "n" equals to, recall above, so let's do some quick substitution
![\bf a^2n^2-a^2n=480\qquad \boxed{n=\cfrac{24}{a}}\qquad a^2\left( \cfrac{24}{a} \right)^2-a^2\left( \cfrac{24}{a} \right)=480 \\\\\\ a^2\cdot \cfrac{24^2}{a^2}-24a=480\implies 24^2-24a=480\implies 576-24a=480 \\\\\\ -24a=-96\implies a=\cfrac{-96}{-24}\implies \blacktriangleright a = 4\blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ n=\cfrac{24}{a}\implies n=\cfrac{24}{4}\implies \blacktriangleright n=6 \blacktriangleleft](https://tex.z-dn.net/?f=%5Cbf%20a%5E2n%5E2-a%5E2n%3D480%5Cqquad%20%5Cboxed%7Bn%3D%5Ccfrac%7B24%7D%7Ba%7D%7D%5Cqquad%20a%5E2%5Cleft%28%20%5Ccfrac%7B24%7D%7Ba%7D%20%5Cright%29%5E2-a%5E2%5Cleft%28%20%5Ccfrac%7B24%7D%7Ba%7D%20%5Cright%29%3D480%20%5C%5C%5C%5C%5C%5C%20a%5E2%5Ccdot%20%5Ccfrac%7B24%5E2%7D%7Ba%5E2%7D-24a%3D480%5Cimplies%2024%5E2-24a%3D480%5Cimplies%20576-24a%3D480%20%5C%5C%5C%5C%5C%5C%20-24a%3D-96%5Cimplies%20a%3D%5Ccfrac%7B-96%7D%7B-24%7D%5Cimplies%20%5Cblacktriangleright%20a%20%3D%204%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20n%3D%5Ccfrac%7B24%7D%7Ba%7D%5Cimplies%20n%3D%5Ccfrac%7B24%7D%7B4%7D%5Cimplies%20%5Cblacktriangleright%20n%3D6%20%5Cblacktriangleleft)