Answer:
triangle
Step-by-step explanation:
Answer:
hello and thank u for asking questions
the correct answers are...
A. is correct because an obtuse angle is an angle that measures over 90°
B. is incorrect because the acute angle is less than 90°
C. is correct because a reflex is "Reflex angles are angles measuring greater than 180 degrees and less than 360 degrees. The measure of a reflex angle is added to an acute or obtuse angle to make a full 360 degree circle"
D. is incorrect because if it is less than 2 but greater than 4 that does not make any sence
hopes this help pls mark brainiest and have a great and wonderful rest of your day
Answer:
Step-by-step explanation:
Find the width as below
- l² + w² + h² = d², where l- length, w- width, h- height, d- the distance between top and bottom corners
Substitute the values and solve for w
- 4² + w² + 12² = 13²
- w² + 160 = 169
- w² = 9
- w = 3 feet
Now find the volume
- V = lwh
- V = 4*3*12 = 144 ft³
These are exponents. To solve an exponent you need to multiply the base it self how many times its says in the power.
a²
a = base
<span>2 = power
</span>
7^5 = 7 × 7 × 7 × 7 × 7 = <span>16807
7^5 = </span><span>16807</span>
Check the picture below, so the parabola looks more or less like that.
now, the vertex is half-way between the focus point and the directrix, so that puts it where you see it in the picture, and the horizontal parabola is opening to the left-hand-side, meaning that the distance "P" is negative.
![\textit{horizontal parabola vertex form with focus point distance} \\\\ 4p(x- h)=(y- k)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h+p,k)}\qquad \stackrel{directrix}{x=h-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\supset}\qquad \stackrel{"p"~is~positive}{op ens~\subset} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Ctextit%7Bhorizontal%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Bp%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7Bx%3Dh-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Csupset%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Csubset%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\begin{cases} h=-7\\ k=-2\\ p=-4 \end{cases}\implies 4(-4)[x-(-7)]~~ = ~~[y-(-2)]^2 \\\\\\ -16(x+7)=(y+2)^2\implies x+7=-\cfrac{(y+2)^2}{16}\implies x=-\cfrac{1}{16}(y+2)^2-7](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20h%3D-7%5C%5C%20k%3D-2%5C%5C%20p%3D-4%20%5Cend%7Bcases%7D%5Cimplies%204%28-4%29%5Bx-%28-7%29%5D~~%20%3D%20~~%5By-%28-2%29%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-16%28x%2B7%29%3D%28y%2B2%29%5E2%5Cimplies%20x%2B7%3D-%5Ccfrac%7B%28y%2B2%29%5E2%7D%7B16%7D%5Cimplies%20x%3D-%5Ccfrac%7B1%7D%7B16%7D%28y%2B2%29%5E2-7)