Answer:
2x^2 = 6x - 5.
-x^2 - 10x = 34.
These have only complex roots/
Step-by-step explanation:
3x^2 - 5x = -8
3x^2 - 5x + 8 = 0
There are complex roots if the discriminant 9b^2 - 4ac) is negative.
Here the discriminant D = (-5)^2 - 4*-5*8 = 25 + 160
This is positive so the roots are real.
2x^2 = 6x - 5
2x^2 - 6x + 5 = 0
D = (-6)^2 - 4*2*5 = 36 - 40 = -4
So this has no real roots only complex ones.
12x = 9x^2 + 4
9x^2 - 12x + 4 = 0
D = (-12)^2 - 4*9 * 4 = 144 - 144 = 0.
- Real roots.
-x^2 - 10x = 34
x^2 + 10x + 34 = 0
D = (10)^2 - 4*1*34 = 100 - 136 = -36.
No real roots = only complex roots.
Answer: The second period class has the greater first quartile.
Answer:

Step-by-step explanation:
The lines surrounding 10 are called positive brackets, meaning the no matter what number is in those brackets, it will always come out of positive.
There is nothing to do with just 10 because we don't need to change anything.
|10| simplified is 10