Its the difference between the y- values divided by the distance between the corresponding x values. Or its sometimes called rise / run.
(a) The "average value" of a function over an interval [a,b] is defined to be
(1/(b-a)) times the integral of f from the limits x= a to x = b.
Now S = 200(5 - 9/(2+t))
The average value of S during the first year (from t = 0 months to t = 12 months) is then:
(1/12) times the integral of 200(5 - 9/(2+t)) from t = 0 to t = 12
or 200/12 times the integral of (5 - 9/(2+t)) from t= 0 to t = 12
This equals 200/12 * (5t -9ln(2+t))
Evaluating this with the limits t= 0 to t = 12 gives:
708.113 units., which is the average value of S(t) during the first year.
(b). We need to find S'(t), and then equate this with the average value.
Now S'(t) = 1800/(t+2)^2
So you're left with solving 1800/(t+2)^2 = 708.113
<span>I'll leave that to you</span>
Answer:
9
Step-by-step explanation:
We can use the distance formula
d = sqrt ( ( y2-y1)^2 + ( x2-x1) ^2)
d = sqrt ( ( 4- -3)^2 + ( -4 -2) ^2)
= sqrt ( ( 7^2 + ( -6)^2)
= sqrt( 49+ 36)
= sqrt(85)
9.219544457
Rounding to the nearest whole number
= 9
C because it’s c trust me
Answer:
1241
Step-by-step explanation:
∴
L.C.M. of 28, 36 and 45 = 2 × 2 × 3 × 3 × 5 × 7 = 1260
∴
the required number is 1260 - 19 = 1241
Hence, if we add 19 to 1241 we will get 1260 which is exactly divisible by 28, 36 and 45.