Answer:
- Divide the resources into three parts using the corresponding process 1, process 1, and process 2 formats to maximize the use of the resources.
- Get the expected revenue by calculating the product of the total perfume in ounce and the price of an ounce of perfume.
- Increase the advertisement hours of the product.
- subtract the advert fee from the generated revenue to get the actual revenue.
- subtract the cost of production from the actual revenue to get the actual profit.
Explanation:
The get maximum profit, all the resources must be exhausted in production. The labor is divided into a ratio of 1:1:2 ( which is 5000, 5000, 1000), while the chemical units are in the ratio of 2:2:3 (10000,10000,15000). This would produce in each individual processes; 15000, 15000 and 25000 oz, which is a total of 55000 oz of perfume.
The expected revenue is $275000. If 1000oz from the 55000oz of perfume is sold without advertisement, model Jenny's awareness of the perfume increases the demand by 200oz per hour, therefore, 24hours would field 4800oz demanded, which would only take 270 hours to distribute all remaining perfumes.
The cost of production would be $130000 for labor and chemical resources plus the advert cost of $27000 ( 270 hours by 100) which is a total cost of $157000. The actual profit is $118000 ( $275000 - $157000).
Answer:
<h3><em>SWITCH</em><em> </em><em>CASE</em><em>:</em></h3>
<em>☆</em><em> </em><em>STATEMENT</em><em> </em><em>WILL</em><em> </em><em>BE</em><em> </em><em>EXECUTED</em><em> </em><em>IS</em><em> </em><em>DECIDED</em><em> </em><em>BY</em><em> </em><em>USER</em><em>. </em>
<em>☆</em><em> </em><em>SWITCH</em><em> </em><em>STATEMENT</em><em> </em><em>EVALUATES</em><em> </em><em>ONLY</em><em> </em><em>CHARACTER</em><em> </em><em>《</em><em>OR</em><em> </em><em>》</em><em>INTEGER</em><em> </em><em>VALUE</em><em>. </em>
<em>☆</em><em> </em><em>IT</em><em> </em><em>USING</em><em> </em><em>SINGLE</em><em> </em><em>EXPRESSION</em><em> </em><em>FOR</em><em> </em><em>MULTIPLE</em><em> </em><em>CHOICES</em><em>. </em>
<h3><em>IF</em><em> </em><em>-</em><em> </em><em>ELSE</em><em> </em><em>STATEMENT</em><em>. </em></h3>
<em>☆</em><em> </em><em>STATEMENT</em><em> </em><em>WILL</em><em> </em><em>BE</em><em> </em><em>EXECUTED</em><em> </em><em>DEPEND</em><em> </em><em>UPON</em><em> </em><em>THE</em><em> </em><em>OUTPUT</em><em> </em><em>OF</em><em> </em><em>THE</em><em> </em><em>EXPRESSION</em><em> </em><em>INSIDE</em><em>. </em>
<em>☆</em><em> </em><em>IF</em><em> </em><em>THE</em><em> </em><em>STATEMENT</em><em> </em><em>EVALUATES</em><em> </em><em>INTEGER</em><em>, </em><em>CHARACTER</em><em>, </em><em>POINTER</em><em>《</em><em> </em><em>OR</em><em> </em><em>》</em><em>FLOATING-</em><em> </em><em>POINT</em><em> </em><em>TYPE</em><em> </em><em>《</em><em> </em><em>OR</em><em> </em><em>》</em><em>BOOLEAN</em><em> </em><em>TYPE</em><em>. </em>
<em>☆</em><em> </em><em>IF</em><em> </em><em>USING</em><em> </em><em>MULTIPLE</em><em> </em><em>STATEMENT</em><em> </em><em>FOR</em><em> </em><em>MULTIPLE</em><em> </em><em>CHOICES</em><em>. </em>
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELP</em><em>.</em><em>.</em><em>.</em><em>.</em><em /><em /><em />
Answer:
Query Wizard
Explanation:
We can use the Query Wizard to automatically create a selection query, but in this case, we have less control in our details of the query design, it's the fastest way to create a query, even detect some design errors.
Steps to use the Query Wizard
1) In the Queries group on the Create, click Query Wizard
2) Add fields
3) On the last page of the wizard, add a title to the query
Answer: E. Never
geometric average return can NEVER exceed the arithmetic average return for a given set of returns
Explanation:
The arithmetic average return is always higher than the other average return measure called the geometric average return. The arithmetic return ignores the compounding effect and order of returns and it is misleading when the investment returns are volatile.
Arithmetic returns are the everyday calculation of the average. You take the series of returns (in this case, annual figures), add them up, and then divide the total by the number of returns in the series. Geometric returns (also called compound returns) involve slightly more complicated maths.