Yes, it is 0.09 grater that 10.01
Answer:
Step-by-step explanation:
Here's how you convert:
The little number outside the radical, called the index, serves as the denominator in the rational power, and the power on the x inside the radical serves as the numerator in the rational power on the x.
A couple of examples:
![\sqrt[3]{x^4}=x^{\frac{4}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E4%7D%3Dx%5E%7B%5Cfrac%7B4%7D%7B3%7D)
![\sqrt[5]{x^7}=x^{\frac{7}{5}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E7%7D%3Dx%5E%7B%5Cfrac%7B7%7D%7B5%7D)
It's that simple. For your problem in particular:
is the exact same thing as ![\sqrt[3]{7^1}=7^{\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B7%5E1%7D%3D7%5E%7B%5Cfrac%7B1%7D%7B3%7D)
1.)Convert into Proportion: 3.5/1.7=x/36.5
2.)Cross Multiply: 1.7x=127.75
3.)Simplify and Solve: x=75.14
x=75.14m tall
Answer:
The probability that Joe's stock will go up and he will win in the lottery is 0.00005.
Step-by-step explanation:
Let the events be denoted as:
<em>X</em> = the stock goes up
<em>Y</em> = Joe wins the lottery
Given:
P (X) = 0.50
P (Y) = 0.0001
The events of the stock going up is not dependent on the the event of Joe winning the lottery.
So the events <em>X</em> and <em>Y</em> are independent of each other.
Independent events are those events that can occur together at the same time.
The joint probability of two independent events <em>A</em> and <em>B </em>is,

Compute the value of P (<em>X ∩ Y</em>) as follows:

Thus, the probability that Joe's stock will go up and he will win in the lottery is 0.00005.
Answer:
7.5
Step-by-step explanation:
cause you can divide the 60 with the 8