Answer:
30.53
Step-by-step explanation:
First you must find what 29% of 43 is, in order to do this we must multiply 43 by 29%
43*29% or 43*.29 is 12.47
This means that 29% of 43 is equal to 12.47
So decreasing 43 by 29% would be the same as decreasing 43 by 12.47
43-12.47=30.53
the answer is 3
but a way to work these problems out is to use PEMDAS
p-parentheses
e-exponent
m-multiplication
d-division
a-addition
s-subtraction
they have to be donr in that order or the answer will come out different
Answer:
5
Step-by-step explanation:
? x 2 = 10
/2 /2
? =5
Answer:
27 degrees
Step-by-step explanation:
The easy way is by remembering the formula (a-b)/2=c, where a is the larger angle, and b is the smallest angle. (90-36)/2=27.
The longer, more drawn out answer goes as follows. See the image to understand the notation I use:
- AOE + BOD + BOA + DOE = 360
- AOE + BOD = 90 + 36 = 126
- BOA + DOE = 360 - AOE - BOD = 234
- Since the sum of a triangle's angles is 180, ODE = (180 - DOE) / 2
- Likewise, OBA = (180 - BOA) / 2
- Since CDE is 180, CDO = 180 - ODE = 180 - (180 - DOE) / 2
- Likewise, CBA is 180, so CBO = 180 - OBA = 180 - (180 - BOA) / 2
- The interior angles of the irregular polygon CBOD add up to 360, so CBO + CDO + BOD + BCD = 360.
- Substituting what we already found, 180 - (180 - BOA)/2 + 180 - (180 - DOE)/2 + 36 + BCD = 360
- Cleaning it all up, we get 180 + (BOA + DOE)/2 + 36 + BCD = 360
- As we found in line 3, BOA + DOE = 234, so substituting that in, 180 + 117 + 36 + BCD = 360
- Finally, solving for BCD (360 - 36 - 117 - 180) we get our answer, 27
Note: The long drawn out method shown above is a way to derive the formula for the secant theorem. You do not need to use this method every time. Just remember, large angle minus small angle, all divided by 2. That is it.
Answer:
666.67π .ft^3
<em>here's</em><em> your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>radius</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>1</em><em>0</em><em> </em><em>ft</em>
<em>=</em><em>></em><em> </em><em>height</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>2</em><em>0</em><em> </em><em>ft</em>
<em>=</em><em>></em><em> </em><em>volume</em><em> of</em><em> </em><em>cone </em><em>=</em><em> </em><em>πr^</em><em>2</em><em>h</em><em>/</em><em>3</em>
<em>=</em><em>></em><em> </em><em>putting</em><em> the</em><em> value</em><em> of</em><em> </em><em>radius</em><em> and</em><em> height</em><em> </em>
<em>=</em><em>></em><em> </em><em> </em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>^</em><em>2</em><em>*</em><em>2</em><em>0</em><em>/</em><em>3</em><em>π</em>
<em>=</em><em>></em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>6</em><em>6</em><em>6</em><em>.</em><em>6</em><em>7</em><em>π</em><em> </em><em>.</em><em>ft^</em><em>3</em>
<em>hope</em><em> it</em><em> helps</em>