1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
8

Please Help!

Mathematics
1 answer:
oksano4ka [1.4K]3 years ago
5 0

The locus of the midpoints of all chords that can be drawn from a given fixed point (a,b) on a circle with a radius of 6 units, is a circle of radius 3 units with center at a point whose x & y coordinates are shifted from the center of the given circle by \frac{a}{2} and \frac{b}{2} respectively.

Given: A circle of radius 6 units

To find: The locus of the midpoint of all chords that can be drawn from a given point on the circle.

To find the required locus, we need to know the following:

  • Locus of a moving point is the trajectory of that point. It is the geometrical figure represented by the equation which is satisfied by the coordinates of the moving point.
  • A chord of a circle is a line segment joining any points of a circle.
  • Equation of a circle with center at origin and radius of r units is x^{2} +y^{2} =r^{2}
  • According to the midpoint formula, the coordinates of the midpoint of the line segment joining the points (x_{1},y_{1}) and (x_{2},y_{2}) is (\frac{x_{1}+x_{2} }{2} ,\frac{y_{1}+y_{2} }{2} )

Let, without loss of generality, the given circle be centered at the origin. Even if it is not, we can shift the origin to the center of the given circle with coordinate transformation.

Then, the equation of the given circle is x^{2}+y^{2} =6^{2}, that is, x^{2}+y^{2} = 36

Let the coordinates of the given fixed point be (a,b)

Let the coordinates of any point on the circle be (p,q) and let the coordinates of the midpoint of the chord joining the points (a,b) and (p,q) be (h,k)

We have to find the locus of (h,k)

Then, using the midpoint formula,

(h,k)=(\frac{a+p}{2} ,\frac{b+q}{2})

On solving, we get,

p=2h-a,q=2k-b

Since (a,b) and (p,q) are both points on the given circle, they satisfy the equation of the circle, x^{2}+y^{2} = 36

Then,

a^{2} +b^{2} =36

p^{2} +q^{2} =36

Substituting p=2h-a,q=2k-b in p^{2} +q^{2} =36, we have,

(2h-a)^{2} +(2k-b)^{2} =36

(2(h-\frac{a}{2}) )^{2} +(2(k-\frac{b}{2}))^{2} =36

4(h-\frac{a}{2})^{2} +4(k-\frac{b}{2})^{2} =36

(h-\frac{a}{2})^{2} +(k-\frac{b}{2})^{2} =\frac{36}{4}

(h-\frac{a}{2})^{2} +(k-\frac{b}{2})^{2} =9

(h-\frac{a}{2})^{2} +(k-\frac{b}{2})^{2} =3^{2}

This is the locus of the point (h,k)

Replace (h,k)=(x,y) to get,

(x-\frac{a}{2})^{2} +(y-\frac{b}{2})^{2} =3^{2}

This is the equation of a circle with center at (\frac{a}{2} ,\frac{b}{2} ) and radius 3 units.

Thus, we can conclude that the locus of the midpoints of all chords that can be drawn from a given fixed point (a,b) on a circle with a radius of 6 units, is a circle of radius 3 units with center at a point whose x & y coordinates are shifted from the center of the given circle by \frac{a}{2} and \frac{b}{2} respectively.

Learn more about locus here:

brainly.com/question/23824483

You might be interested in
Determine if the two triangles are congruent. If they are, state how you know. SAS , ASA, AAS, SSS or HL
Mandarinka [93]

Step-by-step explanation:

1. SAS

2. SSS

3. RHS

4. SAS

5. RHS

6. SAS

7. ASA

8. SAS

9. ASA

10. SSS

5 0
3 years ago
Jasmine has $4.90 in quarters, dimes, nickels, and pennies. She has 2 more dimes than quarters. She has 3 more nickels than quar
Ray Of Light [21]

Answer:

dw

Step-by-step explanation:

8 0
3 years ago
A rocket travels in a trajectory given by the equation s = -4.9t 2 + v0t, where s is meters above ground, t is time in seconds a
Reptile [31]

Step-by-step explanation:

s = -4.9t² + 49t

The vertex of the parabola is at t = -b/(2a).

t = -49 / (2 × -4.9)

t = 5

The rocket reaches its maximum height after 5 seconds.

5 0
3 years ago
Ethan sold 2 3 gallon of lemonade. Kayla sold some lemonade too. Together, they sold 1 1 4 gallons.
andrew-mc [135]

8yv9yguciycigydkgfkykfytkdyd

6 0
2 years ago
What is the value of x?
timofeeve [1]

9514 1404 393

Answer:

  x = 3

Step-by-step explanation:

It is convenient to remember the ratios of side lengths of these "special triangles."

The side ratios of ΔABC are 1 : 1 : √2, so BC = AC/√2 = 6.

The side ratios of ΔBCD are 1 : √3 : 2, so BD = BC/2 = 6/2 = 3.

The value of x is 3.

6 0
3 years ago
Other questions:
  • 700 divide by 5 please help
    10·2 answers
  • Part 1
    11·2 answers
  • Show that (3√2-1)² + (3+√2)² is an integer and find its value​
    5·1 answer
  • some friends decided to equally split the cost of the apples to make applesauce. the expression 18b/5 represents how much money
    10·2 answers
  • A group of friends go to the movies. The function h(x) represents the amount of money spent, where x is the number of friends at
    8·2 answers
  • Which of the following correctly combines these terms? 3a + 6b - 7a + (-3b) + 9c
    11·1 answer
  • Help help help help
    14·2 answers
  • If 3 kids can eat 3 ice cream cones in 3 minutes,
    11·1 answer
  • Who know this answer to this question
    11·1 answer
  • Write the following inequality in slope-intercept form. 5x-5y>70
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!