<h2><u>
Answer with explanation</u>
:</h2>
Let
be the distance traveled by deluxe tire .
As per given , we have
Null hypothesis : 
Alternative hypothesis : 
Since
is left-tailed and population standard deviation is known, thus we should perform left-tailed z-test.
Test statistic : 
where, n= sample size
= sample mean
= Population mean
=sample standard deviation
For
, we have

By using z-value table,
P-value for left tailed test : P(z≤-2.23)=1-P(z<2.23) [∵P(Z≤-z)=1-P(Z≤z)]
=1-0.9871=0.0129
Decision : Since p value (0.0129) < significance level (0.05), so we reject the null hypothesis .
[We reject the null hypothesis when p-value is less than the significance level .]
Conclusion : We do not have enough evidence at 0.05 significance level to support the claim that t its deluxe tire averages at least 50,000 miles before it needs to be replaced.
The answer to this problem is b.
Answer with explanation:
Vertices of Triangle X Y Z →→ Pre-Image : X(3,-6),Y(1,-2),Z(-1,-5)
Vertices of Triangle X' Y' Z' →→ Image : X'(-3,6),Y'(-1,2),Z'(1,5)
→→Drawing the Triangle XYZ and X'Y'Z' on coordinate plane
→All sides are unequal in length, so it is a Scalene Triangle.
Joining Z and Z'
⇒And ,finding that , if we rotate Triangle X Y Z in Anti clockwise Direction by an angle of 180°, it gives Triangle X'Y'Z'.
Option :Anti Clockwise Rotation by an angle of 180°
They drop the parenthesis then they added the 2 equations in the numerator the divided the sum of two bye the denominator
The answer is 1 gallon.
Miles per gallon(mpg) is computed by dividing the distance traveled by the how many gallons used. So you can derive a formula for how many gallons you would use given the mpg. You will end up with:

The problem asks for how many gallons of gas she will safe in a five-day work work week. So first you need to compute how many miles that would be.
54 miles/day x 5days =
270 milesSo in a five day work week, she will travel 270 miles.
Now to see how much gas she will save, compute how many gallons she will use up for each car, given the mpg of each and find the difference.
First model:30 mpg

This means that with the first model, she will have used up
9 gallons in a 5-day work week.
Second model: 27 mpg


This means that with the second model, she will have used up 10g in a 5-day work week.
Now for the last bit. How much will she save? You can get that by getting the difference of how many gallons each car would have used up.
10gallons - 9gallons = 1gSo she would have saved
1 gallon of gas if she buys the first car instead of the second.